This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A221216 #29 Feb 16 2025 08:33:19 %S A221216 1,5,6,4,3,2,12,13,14,15,11,10,9,8,7,23,24,25,26,27,28,22,21,20,19,18, %T A221216 17,16,38,39,40,41,42,43,44,45,37,36,35,34,33,32,31,30,29,57,58,59,60, %U A221216 61,62,63,64,65,66,56,55,54,53,52,51,50,49,48,47,46,80 %N A221216 T(n,k) = ((n+k)^2-2*(n+k)+4-(3*n+k-2)*(-1)^(n+k))/2; n , k > 0, read by antidiagonals. %C A221216 Permutation of the natural numbers. %C A221216 a(n) is a pairing function: a function that reversibly maps Z^{+} x Z^{+} onto Z^{+}, where Z^{+} is the set of integer positive numbers. %C A221216 Enumeration table T(n,k). Let m be natural number. The order of the list: %C A221216 T(1,1)=1; %C A221216 T(3,1), T(2,2), T(1,3); %C A221216 T(1,2), T(2,1); %C A221216 . . . %C A221216 T(2*m+1,1), T(2*m,2), T(2*m-1,3),...T(2,2*m), T(1,2*m+1); %C A221216 T(1,2*m), T(2,2*m-1), T(3,2*m-2),...T(2*m-1,2),T(2*m,1); %C A221216 . . . %C A221216 First row contains antidiagonal {T(1,2*m+1), ... T(2*m+1,1)}, read upwards. %C A221216 Second row contains antidiagonal {T(1,2*m), ... T(2*m,1)}, read downwards. %H A221216 Boris Putievskiy, <a href="/A221216/b221216.txt">Rows n = 1..140 of triangle, flattened</a> %H A221216 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations [of] Integer Sequences And Pairing Functions</a> arXiv:1212.2732 [math.CO], 2012. %H A221216 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PairingFunction.html">Pairing functions</a> %H A221216 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %F A221216 As table %F A221216 T(n,k) = ((n+k)^2-2*(n+k)+4-(3*n+k-2)*(-1)^(n+k))/2. %F A221216 As linear sequence %F A221216 a(n) = (A003057(n)^2-2*A003057(n)+4-(3*A002260(n)+A004736(n)-2)*(-1)^A003056(n))/2; a(n) = ((t+2)^2-2*(t+2)+4-(i+3*j-2)*(-1)^t)/2, %F A221216 where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). %e A221216 The start of the sequence as table: %e A221216 1....5...4..12..11..23..22... %e A221216 6....3..13..10..24..21..39... %e A221216 2...14...9..25..20..40..35... %e A221216 15...8..26..19..41..34..60... %e A221216 7...27..18..42..33..61..52... %e A221216 28..17..43..32..62..51..85... %e A221216 16..44..31..63..50..86..73... %e A221216 . . . %e A221216 The start of the sequence as triangle array read by rows: %e A221216 1; %e A221216 5,6; %e A221216 4,3,2; %e A221216 12,13,14,15; %e A221216 11,10,9,8,7; %e A221216 23,24,25,26,27,28; %e A221216 22,21,20,19,18,17,16; %e A221216 . . . %e A221216 Row number r consecutive contains r numbers. %e A221216 If r is odd, row is decreasing. %e A221216 If r is even, row is increasing. %o A221216 (Python) %o A221216 t=int((math.sqrt(8*n-7) - 1)/ 2) %o A221216 i=n-t*(t+1)/2 %o A221216 j=(t*t+3*t+4)/2-n %o A221216 result=((t+2)**2-2*(t+2)+4-(3*i+j-2)*(-1)**t)/2 %Y A221216 Cf. A211394, A221215, A002260, A004736, A003057; %Y A221216 table T(n,k) contains: in rows A084849, A096376, A014105, A014107, A168244, A033537, A100040, A100041; %Y A221216 in columns A130883, A000384, A014106, A033816, A100037, A091823, A071355, A100038, A100039,A130861; %Y A221216 main diagonal and parallel diagonals are A058331, A001844, A005893,A046092, A093328, A142463, A090288, A059993, A051890, A001105, A097080, A056220, A137882, A054000. %K A221216 nonn,tabl %O A221216 1,2 %A A221216 _Boris Putievskiy_, Feb 22 2013