A221270 Number of n X 2 arrays of occupancy after each element moves to some king-move neighbor, with every occupancy equal to zero or two.
0, 6, 16, 52, 174, 588, 1984, 6688, 22536, 75924, 255760, 861496, 2901696, 9773184, 32916280, 110861104, 373373568, 1257492096, 4235114944, 14263430416, 48037679232, 161785483872, 544874848384, 1835074738624, 6180315022560
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..2....0..0....0..2....2..0....0..2....2..0....0..0....0..2....2..2....0..0 ..2..2....0..2....2..0....2..0....0..2....0..2....2..2....0..2....0..0....2..2 ..0..2....2..0....2..0....0..2....0..2....2..0....0..2....0..0....0..0....2..0 ..0..0....2..2....2..0....2..0....0..2....0..2....2..0....2..2....2..2....2..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..65
Crossrefs
Cf. A221273.
Formula
Empirical: a(n) = 6*a(n-1) - 10*a(n-2) + 4*a(n-3) - 2*a(n-5).
Empirical g.f.: 2*x^2*(1 - x)*(3 - 7*x + x^2) / (1 - 6*x + 10*x^2 - 4*x^3 + 2*x^5). - Colin Barker, Mar 14 2018
Comments