cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221285 Square values taken by totient function phi(m) = A000010(m).

Original entry on oeis.org

1, 4, 16, 36, 64, 100, 144, 196, 256, 324, 400, 576, 676, 784, 900, 1024, 1296, 1600, 1764, 1936, 2304, 2500, 2704, 2916, 3136, 3600, 4096, 4356, 4624, 4900, 5184, 5476, 6400, 7056, 7744, 8100, 8836, 9216, 10000, 10816, 11664, 12100, 12544, 12996, 13456, 14400, 15376, 15876
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    inversePhiSingle[(m_)?EvenQ] := Module[{p, nmax, n}, p = Select[Divisors[m] + 1, PrimeQ]; nmax = m*Times @@ (p/(p - 1)); n = m; While[n <= nmax, If[EulerPhi[n] == m, Return[n]]; n++]; 0];
    Reap[For[k = 1, k <= 200, k = k + If[k==1, 1, 2], If[inversePhiSingle[k^2] > 0, Print[k^2]; Sow[k^2]]]][[2, 1]] (* Jean-François Alcover, Dec 11 2018 *)
  • PARI
    is(n)=issquare(n) && istotient(n)

Formula

A002202 INTERSECTION A000290.
a(n) = A221284(n)^2.
Pollack & Pomerance show that n^2 log^.0126 n << a(n) << n^2 log^6 n.