cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A221315 Number of nonnegative integer arrays of length n summing to n without equal adjacent values modulo 2.

Original entry on oeis.org

1, 0, 3, 8, 5, 0, 28, 72, 45, 0, 286, 728, 455, 0, 3060, 7752, 4845, 0, 33649, 85008, 53130, 0, 376740, 950040, 593775, 0, 4272048, 10759232, 6724520, 0, 48903492, 123047496, 76904685, 0, 563921995, 1417861016, 886163135, 0, 6540715896, 16435645072
Offset: 1

Views

Author

R. H. Hardin Jan 10 2013

Keywords

Comments

Column 2 of A221321
Solutions must alternate even-odd, and cannot have an odd number of those pairs for even n, so a(n)=0 for n modulo 4 = 2

Examples

			All solutions for n=5
..1....1....1....1....3
..0....0....0....2....0
..3....1....1....1....1
..0....0....2....0....0
..1....3....1....1....1
		

A221316 Number of nonnegative integer arrays of length n summing to n without equal adjacent values modulo 3.

Original entry on oeis.org

1, 2, 6, 8, 19, 44, 84, 212, 474, 1008, 2438, 5436, 12045, 28174, 63292, 142936, 330285, 748286, 1707460, 3930660, 8968641, 20569786, 47335822, 108517496, 249608726, 574843912, 1322068800, 3046723144, 7024972918, 16192943826, 37371650024
Offset: 1

Views

Author

R. H. Hardin, Jan 10 2013

Keywords

Comments

Column 3 of A221321.

Examples

			Some solutions for n=6
..0....1....1....4....0....0....2....0....0....1....3....1....0....0....0....1
..1....0....3....0....2....1....1....2....1....0....1....0....1....1....2....0
..2....1....1....1....1....2....0....1....0....2....0....1....3....0....0....1
..0....3....0....0....0....1....2....2....2....0....1....2....1....4....2....0
..1....1....1....1....1....2....1....1....1....1....0....0....0....0....0....1
..2....0....0....0....2....0....0....0....2....2....1....2....1....1....2....3
		

Crossrefs

Cf. A221321.

A221317 Number of nonnegative integer arrays of length n summing to n without equal adjacent values modulo 4.

Original entry on oeis.org

1, 2, 7, 14, 28, 66, 168, 378, 866, 2128, 5065, 12000, 28866, 69652, 167994, 405058, 981305, 2381232, 5776411, 14040684, 34175851, 83246764, 202960219, 495273680, 1209625253, 2956269734, 7229756488, 17692733704, 43322486571, 106136686984
Offset: 1

Views

Author

R. H. Hardin Jan 10 2013

Keywords

Comments

Column 4 of A221321

Examples

			Some solutions for n=7
..0....2....1....3....0....0....0....1....0....0....2....0....3....1....0....1
..3....0....3....2....2....1....1....0....1....1....1....5....0....0....2....2
..0....1....0....0....0....2....0....2....0....0....0....0....1....2....0....1
..1....3....2....1....1....1....2....1....1....3....1....1....0....0....2....0
..0....0....0....0....0....0....1....0....0....0....0....0....1....1....1....1
..1....1....1....1....1....1....0....1....5....3....2....1....0....3....2....0
..2....0....0....0....3....2....3....2....0....0....1....0....2....0....0....2
		

A221318 Number of nonnegative integer arrays of length n summing to n without equal adjacent values modulo 5.

Original entry on oeis.org

1, 2, 7, 14, 30, 76, 185, 430, 1044, 2544, 6154, 15002, 36691, 89918, 220728, 543054, 1338428, 3302916, 8162806, 20197554, 50030332, 124053930, 307882669, 764770230, 1901144731, 4729494390, 11773517941, 29327102054, 73094698149, 182280159290
Offset: 1

Views

Author

R. H. Hardin Jan 10 2013

Keywords

Comments

Column 5 of A221321

Examples

			Some solutions for n=8
..0....0....0....1....0....1....0....1....1....0....0....0....0....1....1....1
..1....2....1....3....1....0....1....3....2....2....3....4....2....3....4....3
..0....0....3....0....2....1....2....0....1....0....0....0....1....1....0....0
..3....1....0....1....3....3....0....2....0....4....3....1....0....0....1....1
..0....0....1....0....1....2....1....1....1....1....1....0....2....1....0....2
..1....2....2....2....0....0....2....0....0....0....0....1....0....0....1....0
..3....3....1....1....1....1....0....1....2....1....1....0....3....2....0....1
..0....0....0....0....0....0....2....0....1....0....0....2....0....0....1....0
		

A221319 Number of nonnegative integer arrays of length n summing to n without equal adjacent values modulo 6.

Original entry on oeis.org

1, 2, 7, 14, 30, 76, 188, 444, 1071, 2638, 6460, 15756, 38783, 95778, 236270, 584394, 1448972, 3596146, 8935547, 22233108, 55380945, 138076092, 344565415, 860595928, 2151093021, 5380523278, 13467284628, 33729132584, 84523860027, 211927633632
Offset: 1

Views

Author

R. H. Hardin Jan 10 2013

Keywords

Comments

Column 6 of A221321

Examples

			Some solutions for n=9
..0....0....2....2....0....1....1....0....1....1....1....3....0....1....0....2
..1....1....0....1....2....0....2....2....0....0....0....1....1....0....2....3
..0....0....4....2....1....1....0....1....1....2....3....0....0....1....0....0
..2....2....0....0....0....0....1....0....0....1....1....2....2....0....1....1
..3....0....1....2....1....2....2....1....1....0....0....1....1....4....0....0
..0....3....0....0....0....1....1....2....0....3....1....0....0....0....4....2
..1....0....1....1....2....0....0....1....1....0....2....1....4....1....0....0
..0....2....0....0....0....1....2....2....3....2....1....0....0....0....2....1
..2....1....1....1....3....3....0....0....2....0....0....1....1....2....0....0
		

A221320 Number of nonnegative integer arrays of length n summing to n without equal adjacent values modulo 7.

Original entry on oeis.org

1, 2, 7, 14, 30, 76, 188, 444, 1075, 2656, 6499, 15904, 39257, 97012, 239836, 594484, 1476309, 3670470, 9137025, 22774518, 56827616, 141930316, 354803429, 887699408, 2222657891, 5569118954, 13963300515, 35031289966, 87937202200, 220862633536
Offset: 1

Views

Author

R. H. Hardin Jan 10 2013

Keywords

Comments

Column 7 of A221321

Examples

			Some solutions for n=10
..1....0....0....3....0....1....0....0....1....1....2....1....1....1....1....0
..2....2....2....2....2....0....3....2....3....0....0....0....0....0....0....1
..1....0....3....1....0....1....1....1....0....1....1....1....1....1....2....2
..2....2....0....0....1....0....0....0....1....0....2....4....2....3....0....0
..0....0....1....1....3....3....2....2....3....2....1....1....1....0....1....1
..1....2....0....0....0....0....0....0....0....1....0....0....0....2....0....0
..2....0....1....1....1....4....3....2....1....4....2....2....2....0....3....3
..0....2....0....0....0....0....0....1....0....0....0....0....1....2....0....0
..1....0....1....2....3....1....1....2....1....1....2....1....0....1....2....3
..0....2....2....0....0....0....0....0....0....0....0....0....2....0....1....0
		
Showing 1-6 of 6 results.