cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221367 The simple continued fraction expansion of F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) when x = (1/2)*(9 - sqrt(77)).

This page as a plain text file.
%I A221367 #23 Feb 22 2025 08:58:26
%S A221367 1,7,1,77,1,700,1,6237,1,55447,1,492800,1,4379767,1,38925117,1,
%T A221367 345946300,1,3074591597,1,27325378087,1,242853811200,1,2158358922727,
%U A221367 1,19182376493357,1,170483029517500,1,1515164889164157,1,13466000972959927,1
%N A221367 The simple continued fraction expansion of F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) when x = (1/2)*(9 - sqrt(77)).
%C A221367 The function F(x) := Product_{n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) is analytic for |x| < 1. When x is a quadratic irrational of the form x = 1/2*(N - sqrt(N^2 - 4)), N an integer greater than 2, the real number F(x) has a predictable simple continued fraction expansion. The first examples of these expansions, for N = 2, 4, 6 and 8, are due to Hanna. See A174500 through A175503. The present sequence is the case N = 9. See also A221364 (N = 3), A221365 (N = 5) and A221366 (N = 7).
%C A221367 If we denote the present sequence by [1, c(1), 1, c(2), 1, c(3), ...] then for k = 1, 2, ..., the simple continued fraction expansion of F((1/2*(9 - sqrt(77)))^k) is given by the sequence [1; c(k), 1, c(2*k), 1, c(3*k), 1, ...]. Examples are given below.
%H A221367 Peter Bala, <a href="/A174500/a174500_2.pdf">Some simple continued fraction expansions for an infinite product, Part 1</a>
%H A221367 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,10,0,-10,0,1).
%F A221367 a(2*n-1) = (1/2*(9 + sqrt(77)))^n + (1/2*(9 - sqrt(77)))^n - 2; a(2*n) = 1.
%F A221367 a(4*n-1) = 77*(A018913(n))^2; a(4*n+1) = 7*(A057081(n))^2.
%F A221367 a(n) = 10*a(n-2)-10*a(n-4)+a(n-6). G.f.: -(x^4+7*x^3-9*x^2+7*x+1) / ((x-1)*(x+1)*(x^4-9*x^2+1)). - _Colin Barker_, Jan 20 2013
%e A221367 F(1/2*(9 - sqrt(77))) = 1.12519 81018 34502 81936 ... = 1 + 1/(7 + 1/(1 + 1/(77 + 1/(1 + 1/(700 + 1/(1 + 1/(6237 + ...))))))).
%e A221367 F((1/2*(9 - sqrt(77)))^2) = 1.01282 05391 65421 74656 ... = 1 + 1/(77 + 1/(1 + 1/(6237 + 1/(1 + 1/(492800 + 1/(1 + 1/(38925117 + ...))))))).
%e A221367 F((1/2*(9 - sqrt(77)))^3) = 1.00142 65335 27667 24640 ... = 1 + 1/(700 + 1/(1 + 1/(492800 + 1/(1 + 1/(345946300 + 1/(1 + 1/(242853811200 + ...))))))).
%Y A221367 Cf. A018193, A057081, A174500 (N = 4), A221364 (N = 3), A221365 (N = 5), A221366 (N = 7).
%K A221367 nonn,easy,cofr
%O A221367 0,2
%A A221367 _Peter Bala_, Jan 15 2013