A221455 Number of 0..4 arrays of length n with each element unequal to at least one neighbor, with new values introduced in 0..4 order.
0, 1, 2, 7, 25, 101, 436, 1971, 9159, 43262, 206285, 988963, 4755888, 22910979, 110480787, 533057462, 2572761417, 12419474751, 59958562568, 289483787719, 1397691920591, 6748491159958, 32584154032229, 157329000870907
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..1....1....1....1....1....1....1....1....1....1....1....1....1....1....1....1 ..1....2....0....0....2....2....2....2....2....2....2....0....2....0....1....2 ..0....1....2....2....1....3....2....1....0....3....0....0....3....2....2....0 ..1....1....2....3....3....4....3....3....1....0....3....2....2....2....3....3 ..0....2....3....1....2....0....4....0....0....2....2....1....1....0....2....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A221459.
Formula
Empirical: a(n) = 7*a(n-1) - 7*a(n-2) - 20*a(n-3) + 10*a(n-4) + 24*a(n-5) + 8*a(n-6).
Empirical g.f.: x^2*(1 - 5*x + 10*x^3 + 5*x^4) / ((1 - x - x^2)*(1 - 2*x - 2*x^2)*(1 - 4*x - 4*x^2)). - Colin Barker, Aug 05 2018
Comments