A221463 T(n,k)=Number of 0..k arrays of length n with each element unequal to at least one neighbor, starting with 0.
0, 0, 1, 0, 2, 1, 0, 3, 4, 2, 0, 4, 9, 12, 3, 0, 5, 16, 36, 32, 5, 0, 6, 25, 80, 135, 88, 8, 0, 7, 36, 150, 384, 513, 240, 13, 0, 8, 49, 252, 875, 1856, 1944, 656, 21, 0, 9, 64, 392, 1728, 5125, 8960, 7371, 1792, 34, 0, 10, 81, 576, 3087, 11880, 30000, 43264, 27945, 4896, 55, 0, 11
Offset: 1
Examples
Some solutions for n=6 k=4 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..4....2....1....3....3....2....2....1....4....2....3....1....3....2....3....3 ..1....4....0....1....2....4....3....0....2....0....3....3....2....0....0....4 ..0....0....3....4....2....3....2....1....0....3....2....4....3....3....4....1 ..1....2....1....2....1....0....3....4....0....1....3....1....3....0....2....0 ..0....3....2....3....3....1....4....0....4....2....0....0....0....4....0....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..10000
Crossrefs
Formula
Recursion for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +2*a(n-2)
k=3: a(n) = 3*a(n-1) +3*a(n-2)
k=4: a(n) = 4*a(n-1) +4*a(n-2)
k=5: a(n) = 5*a(n-1) +5*a(n-2)
k=6: a(n) = 6*a(n-1) +6*a(n-2)
k=7: a(n) = 7*a(n-1) +7*a(n-2)
Empirical for row n:
n=2: a(k) = 1*k
n=3: a(k) = 1*k^2
n=4: a(k) = 1*k^3 + 1*k^2
n=5: a(k) = 1*k^4 + 2*k^3
n=6: a(k) = 1*k^5 + 3*k^4 + 1*k^3
n=7: a(k) = 1*k^6 + 4*k^5 + 3*k^4
n=8: a(k) = 1*k^7 + 5*k^6 + 6*k^5 + 1*k^4
n=9: a(k) = 1*k^8 + 6*k^7 + 10*k^6 + 4*k^5
n=10: a(k) = 1*k^9 + 7*k^8 + 15*k^7 + 10*k^6 + 1*k^5
n=11: a(k) = 1*k^10 + 8*k^9 + 21*k^8 + 20*k^7 + 5*k^6
n=12: a(k) = 1*k^11 + 9*k^10 + 28*k^9 + 35*k^8 + 15*k^7 + 1*k^6
n=13: a(k) = 1*k^12 + 10*k^11 + 36*k^10 + 56*k^9 + 35*k^8 + 6*k^7
n=14: a(k) = 1*k^13 + 11*k^12 + 45*k^11 + 84*k^10 + 70*k^9 + 21*k^8 + 1*k^7
n=15: a(k) = 1*k^14 + 12*k^13 + 55*k^12 + 120*k^11 + 126*k^10 + 56*k^9 + 7*k^8
Apparently then T(n,k) = sum { binomial(n-2-i,i)*k^(n-1-i) , 0<=2*i<=n-2 }.
The formula reduces to T(n,k) = [4*k^(n-1)*(1+G)^(2*n-2) +4^n] /[2^(n+1) *G *(1+G)^(n-1)] for even n and to T(n,k) = [4*k^(n-1) *(1+G)^(2*n-2) -4^n] /[2^(n+1) *G *(1+G)^(n-1)] for odd n, where G=sqrt(1+4/k). - R. J. Mathar, Jan 21 2013
Comments