cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221463 T(n,k)=Number of 0..k arrays of length n with each element unequal to at least one neighbor, starting with 0.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 0, 3, 4, 2, 0, 4, 9, 12, 3, 0, 5, 16, 36, 32, 5, 0, 6, 25, 80, 135, 88, 8, 0, 7, 36, 150, 384, 513, 240, 13, 0, 8, 49, 252, 875, 1856, 1944, 656, 21, 0, 9, 64, 392, 1728, 5125, 8960, 7371, 1792, 34, 0, 10, 81, 576, 3087, 11880, 30000, 43264, 27945, 4896, 55, 0, 11
Offset: 1

Views

Author

R. H. Hardin, general recursion proved by Robert Israel in the Sequence Fans Mailing List, Jan 17 2013

Keywords

Comments

Table starts
..0.....0.......0........0.........0..........0..........0...........0
..1.....2.......3........4.........5..........6..........7...........8
..1.....4.......9.......16........25.........36.........49..........64
..2....12......36.......80.......150........252........392.........576
..3....32.....135......384.......875.......1728.......3087........5120
..5....88.....513.....1856......5125......11880......24353.......45568
..8...240....1944.....8960.....30000......81648.....192080......405504
.13...656....7371....43264....175625.....561168....1515031.....3608576
.21..1792...27945...208896...1028125....3856896...11949777....32112640
.34..4896..105948..1008640...6018750...26508384...94253656...285769728
.55.13376..401679..4870144..35234375..182191680..743424031..2543058944
.89.36544.1522881.23515136.206265625.1252200384.5863743809.22630629376

Examples

			Some solutions for n=6 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..4....2....1....3....3....2....2....1....4....2....3....1....3....2....3....3
..1....4....0....1....2....4....3....0....2....0....3....3....2....0....0....4
..0....0....3....4....2....3....2....1....0....3....2....4....3....3....4....1
..1....2....1....2....1....0....3....4....0....1....3....1....3....0....2....0
..0....3....2....3....3....1....4....0....4....2....0....0....0....4....0....3
		

Crossrefs

Column 1 is A000045(n-1)
Column 2 is A028860(n+1)
Column 3 is A106435(n-1)
Column 4 is A094013
Column 5 is A106565(n-1)
Row 2 is A000027
Row 3 is A000290
Row 4 is A011379

Formula

Recursion for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +2*a(n-2)
k=3: a(n) = 3*a(n-1) +3*a(n-2)
k=4: a(n) = 4*a(n-1) +4*a(n-2)
k=5: a(n) = 5*a(n-1) +5*a(n-2)
k=6: a(n) = 6*a(n-1) +6*a(n-2)
k=7: a(n) = 7*a(n-1) +7*a(n-2)
Empirical for row n:
n=2: a(k) = 1*k
n=3: a(k) = 1*k^2
n=4: a(k) = 1*k^3 + 1*k^2
n=5: a(k) = 1*k^4 + 2*k^3
n=6: a(k) = 1*k^5 + 3*k^4 + 1*k^3
n=7: a(k) = 1*k^6 + 4*k^5 + 3*k^4
n=8: a(k) = 1*k^7 + 5*k^6 + 6*k^5 + 1*k^4
n=9: a(k) = 1*k^8 + 6*k^7 + 10*k^6 + 4*k^5
n=10: a(k) = 1*k^9 + 7*k^8 + 15*k^7 + 10*k^6 + 1*k^5
n=11: a(k) = 1*k^10 + 8*k^9 + 21*k^8 + 20*k^7 + 5*k^6
n=12: a(k) = 1*k^11 + 9*k^10 + 28*k^9 + 35*k^8 + 15*k^7 + 1*k^6
n=13: a(k) = 1*k^12 + 10*k^11 + 36*k^10 + 56*k^9 + 35*k^8 + 6*k^7
n=14: a(k) = 1*k^13 + 11*k^12 + 45*k^11 + 84*k^10 + 70*k^9 + 21*k^8 + 1*k^7
n=15: a(k) = 1*k^14 + 12*k^13 + 55*k^12 + 120*k^11 + 126*k^10 + 56*k^9 + 7*k^8
Apparently then T(n,k) = sum { binomial(n-2-i,i)*k^(n-1-i) , 0<=2*i<=n-2 }.
The formula reduces to T(n,k) = [4*k^(n-1)*(1+G)^(2*n-2) +4^n] /[2^(n+1) *G *(1+G)^(n-1)] for even n and to T(n,k) = [4*k^(n-1) *(1+G)^(2*n-2) -4^n] /[2^(n+1) *G *(1+G)^(n-1)] for odd n, where G=sqrt(1+4/k). - R. J. Mathar, Jan 21 2013