A221464 Number of 0..n arrays of length 5 with each element unequal to at least one neighbor, starting with 0.
3, 32, 135, 384, 875, 1728, 3087, 5120, 8019, 12000, 17303, 24192, 32955, 43904, 57375, 73728, 93347, 116640, 144039, 176000, 213003, 255552, 304175, 359424, 421875, 492128, 570807, 658560, 756059, 864000, 983103, 1114112, 1257795
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..5....6....3....4....4....1....1....4....5....3....4....4....5....6....5....6 ..0....6....1....5....5....5....3....5....1....3....0....4....5....4....3....0 ..2....5....2....5....5....3....0....3....0....4....0....3....2....0....2....2 ..5....0....1....4....2....0....4....5....6....3....1....2....0....6....0....4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..137
Crossrefs
Cf. A221463.
Formula
Empirical: a(n) = 1*n^4 + 2*n^3.
Conjectures from Colin Barker, Aug 05 2018: (Start)
G.f.: x*(3 + 17*x + 5*x^2 - x^3) / (1 - x)^5.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
(End)
Comments