A221466 Number of 0..n arrays of length 7 with each element unequal to at least one neighbor, starting with 0.
8, 240, 1944, 8960, 30000, 81648, 192080, 405504, 787320, 1430000, 2459688, 4043520, 6397664, 9796080, 14580000, 21168128, 30067560, 41885424, 57341240, 77280000, 102685968, 134697200, 174620784, 223948800, 284375000, 357812208
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..6....4....5....2....5....2....4....4....4....4....1....3....4....6....2....3 ..6....4....0....2....4....0....4....3....3....4....2....4....5....4....1....2 ..0....5....6....4....0....4....2....6....3....5....2....6....2....6....6....1 ..0....3....1....2....1....4....0....4....6....2....0....1....3....5....4....1 ..6....6....1....3....0....3....2....4....6....0....2....0....6....4....4....0 ..2....2....6....0....6....1....1....3....3....3....5....3....5....6....5....4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..135
Crossrefs
Cf. A221463.
Formula
Empirical: a(n) = 1*n^6 + 4*n^5 + 3*n^4.
Conjectures from Colin Barker, Aug 05 2018: (Start)
G.f.: 8*x*(1 + 23*x + 54*x^2 + 14*x^3 - 2*x^4) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
Comments