A221512 Number of 0..5 arrays of length n with each element differing from at least one neighbor by 2 or more, starting with 0.
0, 4, 13, 80, 381, 1970, 9940, 50495, 255980, 1298632, 6586395, 33407907, 169448914, 859472004, 4359369001, 22111382192, 112152257687, 568853184739, 2885309153794, 14634723355722, 74229524701062, 376503348140640
Offset: 1
Keywords
Examples
Some solutions for n=6 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..2....2....4....5....2....3....3....4....3....5....2....3....3....3....2....5 ..3....5....0....3....3....0....1....0....0....2....3....5....0....5....0....2 ..1....1....0....1....1....5....3....2....5....2....5....0....2....0....0....0 ..2....1....4....2....1....0....5....1....4....4....2....3....1....5....4....3 ..4....3....1....4....4....2....2....3....2....0....5....1....4....1....0....5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 2*a(n-1) +11*a(n-2) +20*a(n-3) +17*a(n-4) -3*a(n-5) +a(n-6).
Empirical g.f.: x^2*(4 + 5*x + 10*x^2 - 2*x^3) / (1 - 2*x - 11*x^2 - 20*x^3 - 17*x^4 + 3*x^5 - x^6). - Colin Barker, Oct 18 2017
Comments