cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221515 T(n,k)=Number of 0..k arrays of length n with each element differing from at least one neighbor by 2 or more, starting with 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 3, 2, 0, 0, 4, 7, 12, 3, 0, 0, 5, 13, 36, 30, 5, 0, 0, 6, 21, 80, 130, 89, 8, 0, 0, 7, 31, 150, 381, 532, 248, 13, 0, 0, 8, 43, 252, 884, 1970, 2088, 706, 21, 0, 0, 9, 57, 392, 1765, 5513, 9940, 8304, 1995, 34, 0, 0, 10, 73, 576, 3174, 12872, 33860
Offset: 1

Views

Author

R. H. Hardin Jan 18 2013

Keywords

Comments

Table starts
.0..0.....0.......0........0.........0..........0..........0...........0
.0..1.....2.......3........4.........5..........6..........7...........8
.0..1.....3.......7.......13........21.........31.........43..........57
.0..2....12......36.......80.......150........252........392.........576
.0..3....30.....130......381.......884.......1765.......3174........5285
.0..5....89.....532.....1970......5513......12872......26477.......49598
.0..8...248....2088.....9940.....33860......92934.....219352......463208
.0.13...706....8304....50495....208756.....672526....1819931.....4330224
.0.21..1995...32876...255980...1285694....4864004...15094631....40472105
.0.34..5652..130376..1298632...7921082...35184566..125207022...378288032
.0.55.15998..516704..6586395..48795589..254499831.1038541668..3535769160
.0.89.45297.2048264.33407907.300602292.1840896185.8614340129.33048102488

Examples

			Some solutions for n=6 k=4
..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0
..4....2....4....4....4....2....2....3....2....4....2....3....2....4....3....4
..1....4....2....1....4....2....0....3....0....3....0....0....4....1....4....4
..2....0....2....2....2....0....3....1....4....1....3....4....3....3....2....0
..4....0....4....0....1....3....2....0....2....1....4....0....0....4....2....3
..2....2....2....2....4....0....4....4....0....4....1....4....3....1....0....0
		

Crossrefs

Column 2 is A000045(n-1)
Row 2 is A000027(n-1)
Row 3 is A002061(n-1)
Row 4 is A011379(n-1)

Formula

Empirical for column k:
k=2: a(n) = a(n-1) +a(n-2)
k=3: a(n) = a(n-1) +4*a(n-2) +3*a(n-3) +a(n-4)
k=4: a(n) = 2*a(n-1) +6*a(n-2) +6*a(n-3) +4*a(n-4) +4*a(n-6)
k=5: a(n) = 2*a(n-1) +11*a(n-2) +20*a(n-3) +17*a(n-4) -3*a(n-5) +a(n-6)
k=6: a(n) = 3*a(n-1) +14*a(n-2) +29*a(n-3) +28*a(n-4) +a(n-5) +27*a(n-6) +8*a(n-7) +2*a(n-8)
k=7: a(n) = 3*a(n-1) +21*a(n-2) +58*a(n-3) +79*a(n-4) +32*a(n-5) +23*a(n-6) +4*a(n-7) +8*a(n-8)
Empirical for row n:
n=2: a(k) = k - 1
n=3: a(k) = k^2 - 3*k + 3 for k>1
n=4: a(k) = k^3 - 2*k^2 + k
n=5: a(k) = k^4 - k^3 - 10*k^2 + 33*k - 34 for k>3
n=6: a(k) = k^5 - 20*k^3 + 78*k^2 - 146*k + 125 for k>4
n=7: a(k) = k^6 + k^5 - 29*k^4 + 104*k^3 - 173*k^2 + 136*k - 40 for k>3