A221515 T(n,k)=Number of 0..k arrays of length n with each element differing from at least one neighbor by 2 or more, starting with 0.
0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 3, 2, 0, 0, 4, 7, 12, 3, 0, 0, 5, 13, 36, 30, 5, 0, 0, 6, 21, 80, 130, 89, 8, 0, 0, 7, 31, 150, 381, 532, 248, 13, 0, 0, 8, 43, 252, 884, 1970, 2088, 706, 21, 0, 0, 9, 57, 392, 1765, 5513, 9940, 8304, 1995, 34, 0, 0, 10, 73, 576, 3174, 12872, 33860
Offset: 1
Examples
Some solutions for n=6 k=4 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..4....2....4....4....4....2....2....3....2....4....2....3....2....4....3....4 ..1....4....2....1....4....2....0....3....0....3....0....0....4....1....4....4 ..2....0....2....2....2....0....3....1....4....1....3....4....3....3....2....0 ..4....0....4....0....1....3....2....0....2....1....4....0....0....4....2....3 ..2....2....2....2....4....0....4....4....0....4....1....4....3....1....0....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1574
Crossrefs
Formula
Empirical for column k:
k=2: a(n) = a(n-1) +a(n-2)
k=3: a(n) = a(n-1) +4*a(n-2) +3*a(n-3) +a(n-4)
k=4: a(n) = 2*a(n-1) +6*a(n-2) +6*a(n-3) +4*a(n-4) +4*a(n-6)
k=5: a(n) = 2*a(n-1) +11*a(n-2) +20*a(n-3) +17*a(n-4) -3*a(n-5) +a(n-6)
k=6: a(n) = 3*a(n-1) +14*a(n-2) +29*a(n-3) +28*a(n-4) +a(n-5) +27*a(n-6) +8*a(n-7) +2*a(n-8)
k=7: a(n) = 3*a(n-1) +21*a(n-2) +58*a(n-3) +79*a(n-4) +32*a(n-5) +23*a(n-6) +4*a(n-7) +8*a(n-8)
Empirical for row n:
n=2: a(k) = k - 1
n=3: a(k) = k^2 - 3*k + 3 for k>1
n=4: a(k) = k^3 - 2*k^2 + k
n=5: a(k) = k^4 - k^3 - 10*k^2 + 33*k - 34 for k>3
n=6: a(k) = k^5 - 20*k^3 + 78*k^2 - 146*k + 125 for k>4
n=7: a(k) = k^6 + k^5 - 29*k^4 + 104*k^3 - 173*k^2 + 136*k - 40 for k>3
Comments