A221516 Number of 0..n arrays of length 5 with each element differing from at least one neighbor by 2 or more, starting with 0.
0, 3, 30, 130, 381, 884, 1765, 3174, 5285, 8296, 12429, 17930, 25069, 34140, 45461, 59374, 76245, 96464, 120445, 148626, 181469, 219460, 263109, 312950, 369541, 433464, 505325, 585754, 675405, 774956, 885109, 1006590, 1140149, 1286560
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..3....6....3....6....4....2....3....2....5....4....4....6....2....6....6....2 ..5....2....4....2....6....3....3....0....6....1....0....0....0....4....5....3 ..4....4....6....6....5....5....0....6....0....0....5....4....4....2....1....6 ..6....6....4....4....0....3....4....1....2....5....0....2....0....4....4....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A221515.
Formula
Empirical: a(n) = 1*n^4 - 1*n^3 - 10*n^2 + 33*n - 34 for n>3.
Conjectures from Colin Barker, Aug 06 2018: (Start)
G.f.: x^2*(3 + 15*x + 10*x^2 + x^3 - 6*x^4 + 2*x^5 - x^6) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>8.
(End)
Comments