cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221526 Number of 0..n arrays of length 6 with each element differing from at least one neighbor by 2 or more.

Original entry on oeis.org

0, 10, 274, 2172, 9982, 33380, 90684, 212812, 447962, 867012, 1569640, 2691164, 4410102, 6956452, 10620692, 15763500, 22826194, 32341892, 44947392, 61395772, 82569710, 109495524, 143357932, 185515532, 237517002, 301118020, 378298904
Offset: 1

Views

Author

R. H. Hardin, Jan 19 2013

Keywords

Comments

Row 6 of A221524.

Examples

			Some solutions for n=6:
..0....6....6....3....0....5....0....1....5....5....3....4....0....0....1....6
..5....1....1....0....4....1....6....3....2....3....0....1....5....6....5....0
..6....2....1....0....6....3....0....5....2....0....6....5....6....0....2....6
..1....6....6....2....5....5....5....1....4....5....3....2....0....2....0....0
..5....2....2....3....3....5....1....3....0....3....1....0....6....3....0....5
..3....0....4....6....5....0....4....6....2....5....4....5....4....1....5....2
		

Crossrefs

Cf. A221524.

Formula

Empirical: a(n) = 1*n^6 - 20*n^4 + 83*n^3 - 182*n^2 + 236*n - 148 for n>3.
Conjectures from Colin Barker, Aug 06 2018: (Start)
G.f.: 2*x^2*(5 + 102*x + 232*x^2 + 91*x^3 - 61*x^4 + 3*x^5 - 15*x^6 + 4*x^7 - x^8) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>10.
(End)