This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A221530 #47 Sep 04 2023 06:07:12 %S A221530 1,1,2,2,2,2,3,4,2,3,5,6,4,3,2,7,10,6,6,2,4,11,14,10,9,4,4,2,15,22,14, %T A221530 15,6,8,2,4,22,30,22,21,10,12,4,4,3,30,44,30,33,14,20,6,8,3,4,42,60, %U A221530 44,45,22,28,10,12,6,4,2,56,84,60,66,30,44,14,20,9,8,2,6 %N A221530 Triangle read by rows: T(n,k) = A000005(k)*A000041(n-k). %C A221530 T(n,k) is the number of partitions of n that contain k as a part multiplied by the number of divisors of k. %C A221530 It appears that T(n,k) is also the total number of appearances of k in the last k sections of the set of partitions of n multiplied by the number of divisors of k. %C A221530 T(n,k) is also the number of partitions of k into equal parts multiplied by the number of ones in the j-th section of the set of partitions of n, where j = (n - k + 1). %C A221530 For another version see A245095. - _Omar E. Pol_, Jul 15 2014 %H A221530 Paolo Xausa, <a href="/A221530/b221530.txt">Table of n, a(n) for n = 1..11325</a> (rows 1..150 of the triangle, flattened) %F A221530 T(n,k) = d(k)*p(n-k) = A000005(k)*A027293(n,k). %e A221530 For n = 6: %e A221530 ------------------------- %e A221530 k A000005 T(6,k) %e A221530 1 1 * 7 = 7 %e A221530 2 2 * 5 = 10 %e A221530 3 2 * 3 = 6 %e A221530 4 3 * 2 = 6 %e A221530 5 2 * 1 = 2 %e A221530 6 4 * 1 = 4 %e A221530 . A000041 %e A221530 ------------------------- %e A221530 So row 6 is [7, 10, 6, 6, 4, 2]. Note that the sum of row 6 is 7+10+6+6+2+4 = 35 equals A006128(6). %e A221530 . %e A221530 Triangle begins: %e A221530 1; %e A221530 1, 2; %e A221530 2, 2, 2; %e A221530 3, 4, 2, 3; %e A221530 5, 6, 4, 3, 2; %e A221530 7, 10, 6, 6, 2, 4; %e A221530 11, 14, 10, 9, 4, 4, 2; %e A221530 15, 22, 14, 15, 6, 8, 2, 4; %e A221530 22, 30, 22, 21, 10, 12, 4, 4, 3; %e A221530 30, 44, 30, 33, 14, 20, 6, 8, 3, 4; %e A221530 42, 60, 44, 45, 22, 28, 10, 12, 6, 4, 2; %e A221530 56, 84, 60, 66, 30, 44, 14, 20, 9, 8, 2, 6; %e A221530 ... %t A221530 A221530row[n_]:=DivisorSigma[0,Range[n]]PartitionsP[n-Range[n]];Array[A221530row,10] (* _Paolo Xausa_, Sep 04 2023 *) %o A221530 (PARI) row(n) = vector(n, i, numdiv(i)*numbpart(n-i)); \\ _Michel Marcus_, Jul 18 2014 %Y A221530 Similar to A221529. %Y A221530 Columns 1-2: A000041, A139582. Leading diagonals 1-3: A000005, A000005, A062011. Row sums give A006128. %Y A221530 Cf. A027293, A135010, A138137, A182703, A245095, A245099. %K A221530 nonn,tabl %O A221530 1,3 %A A221530 _Omar E. Pol_, Jan 19 2013