This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A221531 #14 Feb 21 2013 15:54:21 %S A221531 1,2,1,2,2,2,3,2,4,3,2,3,4,6,5,4,2,6,6,10,7,2,4,4,9,10,14,11,4,2,8,6, %T A221531 15,14,22,15,3,4,4,12,10,21,22,30,22,4,3,8,6,20,14,33,30,44,30,2,4,6, %U A221531 12,10,28,22,45,44,60,42,6,2,8,9,20,14,44,30,66,60,84,56 %N A221531 Triangle read by rows: T(n,k) = A000005(n-k+1)*A000041(k-1), n>=1, k>=1. %F A221531 T(n,k) = d(n-k+1)*p(k-1), n>=1, k>=1. %e A221531 For n = 6: %e A221531 ------------------------- %e A221531 k A000041 T(6,k) %e A221531 1 1 * 4 = 4 %e A221531 2 1 * 2 = 2 %e A221531 3 2 * 3 = 6 %e A221531 4 3 * 2 = 6 %e A221531 5 5 * 2 = 10 %e A221531 6 7 * 1 = 7 %e A221531 . A000005 %e A221531 ------------------------- %e A221531 So row 6 is [4, 2, 6, 6, 10, 7]. Note that the sum of row 6 is 4+2+6+6+10+7 = 35 equals A006128(6). %e A221531 . %e A221531 Triangle begins: %e A221531 1; %e A221531 2, 1; %e A221531 2, 2, 2; %e A221531 3, 2, 4, 3; %e A221531 2, 3, 4, 6, 5; %e A221531 4, 2, 6, 6, 10, 7; %e A221531 2, 4, 4, 9, 10, 14, 11; %e A221531 4, 2, 8, 6, 15, 14, 22, 15; %e A221531 3, 4, 4, 12, 10, 21, 22, 30, 22; %e A221531 4, 3, 8, 6, 20, 14, 33, 30, 44, 30; %e A221531 2, 4, 6, 12, 10, 28, 22, 45, 44, 60, 42; %e A221531 6, 2, 8, 9, 20, 14, 44, 30, 66, 60, 84, 56; %e A221531 ... %Y A221531 Mirror of A221530. Columns 1-3: A000005, A000005, A062011. Leading diagonals 1-2: A000041, A139582. Row sums give A006128. %Y A221531 Cf. A140207, A182703. %K A221531 nonn,tabl %O A221531 1,2 %A A221531 _Omar E. Pol_, Jan 19 2013