A221542 T(n,k) = Number of 0..k arrays of length n with each element differing from at least one neighbor by something other than 1, starting with 0.
0, 0, 1, 0, 2, 1, 0, 3, 4, 2, 0, 4, 8, 10, 3, 0, 5, 14, 30, 22, 5, 0, 6, 22, 68, 103, 54, 8, 0, 7, 32, 130, 303, 364, 134, 13, 0, 8, 44, 222, 716, 1386, 1276, 334, 21, 0, 9, 58, 350, 1455, 4018, 6311, 4483, 822, 34, 0, 10, 74, 520, 2658, 9665, 22466, 28762, 15740, 2014, 55, 0, 11
Offset: 1
Examples
Some solutions for n=6 k=4 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..4....2....2....3....2....0....4....0....4....4....3....4....0....4....4....4 ..0....4....4....4....0....2....3....2....3....0....0....4....2....1....4....4 ..0....0....0....4....4....4....1....3....1....4....2....2....0....1....2....0 ..3....2....4....4....4....0....0....3....1....1....4....4....4....2....0....0 ..0....2....1....2....0....2....2....3....3....1....4....2....0....0....0....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..2080
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) -2*a(n-2) +4*a(n-4)
k=3: a(n) = 3*a(n-1) +2*a(n-2) -a(n-3) +a(n-4)
k=4: a(n) = 5*a(n-1) -3*a(n-2) +a(n-3) +15*a(n-4) +3*a(n-5) for n>6
k=5: a(n) = 5*a(n-1) +3*a(n-2) +9*a(n-4) +6*a(n-5) +3*a(n-6)
k=6: a(n) = 7*a(n-1) -4*a(n-2) +6*a(n-3) +26*a(n-4) +10*a(n-5) +16*a(n-6) +12*a(n-8)
k=7: a(n) = 7*a(n-1) +4*a(n-2) +5*a(n-3) +20*a(n-4) +20*a(n-5) +23*a(n-6) -6*a(n-7) +3*a(n-8)
Empirical for row n:
n=2: a(n) = 1*n for n>1
n=3: a(n) = 1*n^2 - 1*n + 2 for n>1
n=4: a(n) = 1*n^3 + 1*n
n=5: a(n) = 1*n^4 + 1*n^3 - 3*n^2 + 10*n - 9 for n>3
n=6: a(n) = 1*n^5 + 2*n^4 - 6*n^3 + 21*n^2 - 31*n + 23 for n>4
n=7: a(n) = 1*n^6 + 3*n^5 - 8*n^4 + 25*n^3 - 30*n^2 + 20*n - 9 for n>3
Comments