A221568 Number of 0..3 arrays of length n with each element differing from at least one neighbor by something other than 1.
0, 10, 26, 100, 342, 1210, 4240, 14898, 52306, 183684, 645006, 2264978, 7953568, 27929338, 98075178, 344395620, 1209361446, 4246729738, 14912591664, 52366268642, 183886620962, 645726538244, 2267499179678, 7962430263202, 27960449231680, 98184435580010
Offset: 1
Examples
Some solutions for n=6 ..1....0....1....0....3....0....3....2....0....0....3....0....0....0....2....0 ..3....2....1....2....1....2....3....0....2....2....1....0....0....3....2....0 ..2....2....1....3....0....0....0....3....3....3....2....0....0....2....0....0 ..2....2....1....3....3....1....3....3....0....0....0....3....3....2....1....2 ..3....3....1....3....1....3....3....2....0....1....1....0....3....0....1....2 ..0....0....1....3....1....3....3....2....2....1....1....3....3....0....3....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Sergey Kitaev, Jeffrey Remmel, (a,b)-rectangle patterns in permutations and words, arXiv:1304.4286 [math.CO], 2013.
- Index entries for linear recurrences with constant coefficients, signature (3,2,-1,1).
Programs
-
PARI
concat(0, Vec(2*x^2*(5 - 2*x + x^2) / ((1 + x)*(1 - 4*x + 2*x^2 - x^3)) + O(x^30))) \\ Colin Barker, Jan 31 2017
Formula
a(n) = 3*a(n-1) +2*a(n-2) -a(n-3) +a(n-4).
G.f.: 2*x^2*(5 - 2*x + x^2) / ((1 + x)*(1 - 4*x + 2*x^2 - x^3)). - Colin Barker, Jan 31 2017
Comments