cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221569 Number of 0..4 arrays of length n with each element differing from at least one neighbor by something other than 1.

Original entry on oeis.org

0, 17, 59, 289, 1293, 5913, 26911, 122621, 558547, 2544357, 11590169, 52796369, 240501763, 1095550873, 4990531051, 22733220441, 103555975477, 471725515497, 2148837489879, 9788536778149, 44589436230083, 203116958964733
Offset: 1

Views

Author

R. H. Hardin, Jan 20 2013

Keywords

Examples

			Some solutions for n=6
..4....2....2....2....3....4....2....2....4....0....3....2....0....4....4....4
..4....2....4....4....0....4....0....0....0....0....3....4....0....4....1....2
..2....1....0....1....0....4....2....1....3....0....0....3....3....2....0....2
..0....4....3....1....4....1....4....4....1....0....0....0....3....2....0....2
..3....3....0....1....0....2....0....2....0....4....3....2....4....4....3....1
..1....3....3....3....3....2....0....0....4....0....0....4....0....4....3....3
		

Crossrefs

Column 4 of A221573.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) = 5*a(n-1) -3*a(n-2) +a(n-3) +15*a(n-4) +3*a(n-5),seq(a(i)=[0, 17, 59, 289, 1293, 5913][i],i=1..6)},
    a(n),remember):
    map(f, [$1..50]); # Robert Israel, Jun 04 2018

Formula

Empirical: a(n) = 5*a(n-1) -3*a(n-2) +a(n-3) +15*a(n-4) +3*a(n-5) for n>6.
Empirical g.f.: -x^2*(17-26*x+45*x^2+8*x^3+x^4) / ( -1+5*x-3*x^2+x^3+15*x^4+3*x^5 ). - R. J. Mathar, Jun 06 2013
Formula verified by Robert Israel, Jun 04 2018: see link.