A221569 Number of 0..4 arrays of length n with each element differing from at least one neighbor by something other than 1.
0, 17, 59, 289, 1293, 5913, 26911, 122621, 558547, 2544357, 11590169, 52796369, 240501763, 1095550873, 4990531051, 22733220441, 103555975477, 471725515497, 2148837489879, 9788536778149, 44589436230083, 203116958964733
Offset: 1
Keywords
Examples
Some solutions for n=6 ..4....2....2....2....3....4....2....2....4....0....3....2....0....4....4....4 ..4....2....4....4....0....4....0....0....0....0....3....4....0....4....1....2 ..2....1....0....1....0....4....2....1....3....0....0....3....3....2....0....2 ..0....4....3....1....4....1....4....4....1....0....0....0....3....2....0....2 ..3....3....0....1....0....2....0....2....0....4....3....2....4....4....3....1 ..1....3....3....3....3....2....0....0....4....0....0....4....0....4....3....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Robert Israel, Maple-assisted proof of formula
Crossrefs
Column 4 of A221573.
Programs
-
Maple
f:= gfun:-rectoproc({a(n) = 5*a(n-1) -3*a(n-2) +a(n-3) +15*a(n-4) +3*a(n-5),seq(a(i)=[0, 17, 59, 289, 1293, 5913][i],i=1..6)}, a(n),remember): map(f, [$1..50]); # Robert Israel, Jun 04 2018
Formula
Empirical: a(n) = 5*a(n-1) -3*a(n-2) +a(n-3) +15*a(n-4) +3*a(n-5) for n>6.
Empirical g.f.: -x^2*(17-26*x+45*x^2+8*x^3+x^4) / ( -1+5*x-3*x^2+x^3+15*x^4+3*x^5 ). - R. J. Mathar, Jun 06 2013
Formula verified by Robert Israel, Jun 04 2018: see link.