A221572 Number of 0..7 arrays of length n with each element differing from at least one neighbor by something other than 1.
0, 50, 314, 2500, 19014, 145800, 1116400, 8550512, 65485386, 501533796, 3841097940, 29417832750, 225302467392, 1725524876860, 13215284016064, 101211946587176, 775152325067630, 5936662096954472, 45467136862793520
Offset: 1
Keywords
Examples
Some solutions for n=6 ..6....5....1....2....1....3....6....4....4....2....7....0....1....2....2....6 ..4....2....6....7....6....6....0....2....0....7....4....4....6....6....4....2 ..6....4....7....0....0....1....2....2....7....0....2....1....3....2....1....4 ..2....5....4....3....0....4....0....6....4....0....7....1....2....3....6....0 ..6....7....3....3....0....7....7....1....0....1....5....6....5....0....6....1 ..1....7....1....0....5....0....4....1....0....1....3....0....3....0....0....4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 7*a(n-1) +4*a(n-2) +5*a(n-3) +20*a(n-4) +20*a(n-5) +23*a(n-6) -6*a(n-7) +3*a(n-8).
Empirical g.f.: -2*x^2*(25-18*x+51*x^2+4*x^3+66*x^4-18*x^5+6*x^6) / ( -1+7*x+4*x^2+5*x^3+20*x^4+20*x^5+23*x^6-6*x^7+3*x^8 ). - R. J. Mathar, Jun 06 2013
Comments