cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221572 Number of 0..7 arrays of length n with each element differing from at least one neighbor by something other than 1.

Original entry on oeis.org

0, 50, 314, 2500, 19014, 145800, 1116400, 8550512, 65485386, 501533796, 3841097940, 29417832750, 225302467392, 1725524876860, 13215284016064, 101211946587176, 775152325067630, 5936662096954472, 45467136862793520
Offset: 1

Views

Author

R. H. Hardin Jan 20 2013

Keywords

Comments

Column 7 of A221573

Examples

			Some solutions for n=6
..6....5....1....2....1....3....6....4....4....2....7....0....1....2....2....6
..4....2....6....7....6....6....0....2....0....7....4....4....6....6....4....2
..6....4....7....0....0....1....2....2....7....0....2....1....3....2....1....4
..2....5....4....3....0....4....0....6....4....0....7....1....2....3....6....0
..6....7....3....3....0....7....7....1....0....1....5....6....5....0....6....1
..1....7....1....0....5....0....4....1....0....1....3....0....3....0....0....4
		

Formula

Empirical: a(n) = 7*a(n-1) +4*a(n-2) +5*a(n-3) +20*a(n-4) +20*a(n-5) +23*a(n-6) -6*a(n-7) +3*a(n-8).
Empirical g.f.: -2*x^2*(25-18*x+51*x^2+4*x^3+66*x^4-18*x^5+6*x^6) / ( -1+7*x+4*x^2+5*x^3+20*x^4+20*x^5+23*x^6-6*x^7+3*x^8 ). - R. J. Mathar, Jun 06 2013