A221573 T(n,k)=Number of 0..k arrays of length n with each element differing from at least one neighbor by something other than 1.
0, 0, 2, 0, 5, 2, 0, 10, 9, 4, 0, 17, 26, 25, 6, 0, 26, 59, 100, 57, 10, 0, 37, 114, 289, 342, 141, 16, 0, 50, 197, 676, 1293, 1210, 345, 26, 0, 65, 314, 1369, 3734, 5913, 4240, 853, 42, 0, 82, 471, 2500, 8991, 20944, 26911, 14898, 2097, 68, 0, 101, 674, 4225, 19014
Offset: 1
Examples
Some solutions for n=6 k=4 ..2....2....3....1....0....0....2....1....2....2....3....1....4....3....1....4 ..0....0....0....1....4....0....2....3....0....4....0....3....4....3....3....4 ..1....1....4....3....4....2....0....4....0....0....4....2....3....0....1....2 ..3....1....2....1....3....3....2....4....0....3....3....2....1....3....0....0 ..3....4....1....1....0....0....0....3....1....2....1....4....0....3....3....0 ..0....1....4....1....3....0....4....0....3....4....3....4....2....3....0....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..2080
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) -2*a(n-2) +4*a(n-4)
k=3: a(n) = 3*a(n-1) +2*a(n-2) -a(n-3) +a(n-4)
k=4: a(n) = 5*a(n-1) -3*a(n-2) +a(n-3) +15*a(n-4) +3*a(n-5) for n>6
k=5: a(n) = 5*a(n-1) +3*a(n-2) +9*a(n-4) +6*a(n-5) +3*a(n-6)
k=6: a(n) = 7*a(n-1) -4*a(n-2) +6*a(n-3) +26*a(n-4) +10*a(n-5) +16*a(n-6) +12*a(n-8)
k=7: a(n) = 7*a(n-1) +4*a(n-2) +5*a(n-3) +20*a(n-4) +20*a(n-5) +23*a(n-6) -6*a(n-7) +3*a(n-8)
Empirical for row n:
n=2: a(n) = 1*n^2 + 1
n=3: a(n) = 1*n^3 - 1*n^2 + 3*n - 1
n=4: a(n) = 1*n^4 + 2*n^2 + 1
n=5: a(n) = 1*n^5 + 1*n^4 - 2*n^3 + 12*n^2 - 15*n + 9 for n>2
n=6: a(n) = 1*n^6 + 2*n^5 - 5*n^4 + 24*n^3 - 41*n^2 + 50*n - 31 for n>3
n=7: a(n) = 1*n^7 + 3*n^6 - 7*n^5 + 29*n^4 - 41*n^3 + 45*n^2 - 33*n + 19 for n>2
Comments