cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221573 T(n,k)=Number of 0..k arrays of length n with each element differing from at least one neighbor by something other than 1.

Original entry on oeis.org

0, 0, 2, 0, 5, 2, 0, 10, 9, 4, 0, 17, 26, 25, 6, 0, 26, 59, 100, 57, 10, 0, 37, 114, 289, 342, 141, 16, 0, 50, 197, 676, 1293, 1210, 345, 26, 0, 65, 314, 1369, 3734, 5913, 4240, 853, 42, 0, 82, 471, 2500, 8991, 20944, 26911, 14898, 2097, 68, 0, 101, 674, 4225, 19014
Offset: 1

Views

Author

R. H. Hardin Jan 20 2013

Keywords

Comments

Table starts
...0.....0.......0........0.........0..........0...........0............0
...2.....5......10.......17........26.........37..........50...........65
...2.....9......26.......59.......114........197.........314..........471
...4....25.....100......289.......676.......1369........2500.........4225
...6....57.....342.....1293......3734.......8991.......19014........36497
..10...141....1210.....5913.....20944......59705......145800.......317233
..16...345....4240....26911....117104.....395641.....1116400......2754635
..26...853...14898...122621....655198....2622817.....8550512.....23923281
..42..2097...52306...558547...3665306...17385993....65485386....207761745
..68..5149..183684..2544357..20505052..115249117...501533796...1804315029
.110.12633..645006.11590169.114711980..763966685..3841097940..15669633131
.178.31013.2264978.52796369.641737294.5064207645.29417832750.136083460405

Examples

			Some solutions for n=6 k=4
..2....2....3....1....0....0....2....1....2....2....3....1....4....3....1....4
..0....0....0....1....4....0....2....3....0....4....0....3....4....3....3....4
..1....1....4....3....4....2....0....4....0....0....4....2....3....0....1....2
..3....1....2....1....3....3....2....4....0....3....3....2....1....3....0....0
..3....4....1....1....0....0....0....3....1....2....1....4....0....3....3....0
..0....1....4....1....3....0....4....0....3....4....3....4....2....3....0....0
		

Crossrefs

Column 1 is A006355
Row 2 is A002522
Row 4 is A082044

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) -2*a(n-2) +4*a(n-4)
k=3: a(n) = 3*a(n-1) +2*a(n-2) -a(n-3) +a(n-4)
k=4: a(n) = 5*a(n-1) -3*a(n-2) +a(n-3) +15*a(n-4) +3*a(n-5) for n>6
k=5: a(n) = 5*a(n-1) +3*a(n-2) +9*a(n-4) +6*a(n-5) +3*a(n-6)
k=6: a(n) = 7*a(n-1) -4*a(n-2) +6*a(n-3) +26*a(n-4) +10*a(n-5) +16*a(n-6) +12*a(n-8)
k=7: a(n) = 7*a(n-1) +4*a(n-2) +5*a(n-3) +20*a(n-4) +20*a(n-5) +23*a(n-6) -6*a(n-7) +3*a(n-8)
Empirical for row n:
n=2: a(n) = 1*n^2 + 1
n=3: a(n) = 1*n^3 - 1*n^2 + 3*n - 1
n=4: a(n) = 1*n^4 + 2*n^2 + 1
n=5: a(n) = 1*n^5 + 1*n^4 - 2*n^3 + 12*n^2 - 15*n + 9 for n>2
n=6: a(n) = 1*n^6 + 2*n^5 - 5*n^4 + 24*n^3 - 41*n^2 + 50*n - 31 for n>3
n=7: a(n) = 1*n^7 + 3*n^6 - 7*n^5 + 29*n^4 - 41*n^3 + 45*n^2 - 33*n + 19 for n>2