A221577 Number of 0..n arrays of length 7 with each element differing from at least one neighbor by something other than 1.
16, 345, 4240, 26911, 117104, 395641, 1116400, 2754635, 6127696, 12553189, 24049616, 43584535, 75375280, 125247281, 201055024, 313170691, 475045520, 703848925, 1021190416, 1453929359, 2035077616, 2804800105, 3811518320
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0....4....3....0....4....4....4....3....0....0....3....4....0....0....0....4 ..2....0....3....3....0....4....0....0....3....6....0....0....6....0....5....0 ..2....1....5....4....6....0....5....2....1....2....1....5....2....3....0....0 ..3....6....2....6....4....2....3....0....0....5....4....2....4....5....4....0 ..0....1....5....0....4....4....2....4....0....6....4....4....1....1....4....0 ..2....3....5....2....6....1....4....2....3....6....3....2....4....1....4....4 ..4....1....5....5....6....6....2....2....6....6....1....4....4....5....0....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A221573.
Formula
Empirical: a(n) = 1*n^7 + 3*n^6 - 7*n^5 + 29*n^4 - 41*n^3 + 45*n^2 - 33*n + 19 for n>2.
Conjectures from Colin Barker, Aug 08 2018: (Start)
G.f.: x*(16 + 217*x + 1928*x^2 + 1755*x^3 + 2336*x^4 - 1869*x^5 + 1096*x^6 - 579*x^7 + 160*x^8 - 20*x^9) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>10.
(End)
Comments