This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A221581 #17 Feb 28 2022 01:52:57 %S A221581 1,13,195,2730,38402,537615,7529340,105410565,1475786130,20661005638, %T A221581 289254613830,4049564590890,56693911799265,793714765148760, %U A221581 11112006817455180,155568095444334495,2177953337695895942,30491346727741970070,426878854209048054450 %N A221581 A sum over partitions (q=14), see first comment. %C A221581 Set q=14 and f(m)=q^(m-1)*(q-1), then a(n) is the sum over all partitions P of n over all products Product_{k=1..L} f(m_k) where L is the number of different parts in the partition P = [p_1^m_1, p_2^m_2, ..., p_L^m_L]. %C A221581 Setting q to a prime power gives the sequence "Number of conjugacy classes in GL(n,q)": %C A221581 q=3: A006952, q=4: A049314, q=5: A049315, q=7: A049316, q=8: A182603, %C A221581 q=9: A182604, q=11: A182605, q=13: A182606, q=16: A182607, q=17: A182608, %C A221581 q=19: A182609, q=23: A182610, q=25: A182611, q=27: A182612. %C A221581 Sequences where q is not a prime power: %C A221581 q=6: A221578, q=10: A221579, q=12: A221580, %C A221581 q=14: A221581, q=15: A221582, q=18: A221583, q=20: A221584. %H A221581 Alois P. Heinz, <a href="/A221581/b221581.txt">Table of n, a(n) for n = 0..300</a> %p A221581 with(numtheory): %p A221581 b:= proc(n) b(n):= add(phi(d)*14^(n/d), d=divisors(n))/n-1 end: %p A221581 a:= proc(n) a(n):= `if`(n=0, 1, %p A221581 add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n) %p A221581 end: %p A221581 seq(a(n), n=0..30); # _Alois P. Heinz_, Feb 03 2013 %t A221581 b[n_] := Sum[EulerPhi[d]*14^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Feb 17 2014, after _Alois P. Heinz_ *) %o A221581 (PARI) %o A221581 N=66; x='x+O('x^N); %o A221581 gf=prod(n=1,N, (1-x^n)/(1-14*x^n) ); %o A221581 v=Vec(gf) %K A221581 nonn %O A221581 0,2 %A A221581 _Joerg Arndt_, Jan 20 2013