cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221596 T(n,k)=Number of 0..k arrays of length n with each element differing from at least one neighbor by 1 or less.

Original entry on oeis.org

0, 0, 4, 0, 7, 8, 0, 10, 17, 16, 0, 13, 26, 49, 32, 0, 16, 35, 100, 139, 64, 0, 19, 44, 169, 342, 393, 128, 0, 22, 53, 256, 651, 1210, 1113, 256, 0, 25, 62, 361, 1068, 2715, 4240, 3151, 512, 0, 28, 71, 484, 1593, 5082, 11011, 14898, 8921, 1024, 0, 31, 80, 625, 2226, 8475
Offset: 1

Views

Author

R. H. Hardin Jan 20 2013

Keywords

Comments

Table starts
....0......0.......0........0........0.........0.........0.........0..........0
....4......7......10.......13.......16........19........22........25.........28
....8.....17......26.......35.......44........53........62........71.........80
...16.....49.....100......169......256.......361.......484.......625........784
...32....139.....342......651.....1068......1593......2226......2967.......3816
...64....393....1210.....2715.....5082......8475.....13056.....18987......26430
..128...1113....4240....11011....22912.....41401.....67936....103975.....150976
..256...3151...14898....45099...105586....210101....374342....615965.....954572
..512...8921...52306...184063...482204...1047967...2006006...3504371....5714456
.1024..25257..183684...752155..2210256...5267759..10894988..20352239...35218688
.2048..71507..645006..3072247.10115926..26387005..58789204.116958723..213700742
.4096.202449.2264978.12550859.46327024.132384353.318224626.675761541.1307528098

Examples

			Some solutions for n=6 k=4
..0....2....3....3....2....2....1....1....2....4....4....2....0....2....4....1
..0....1....4....2....3....3....2....1....3....3....4....2....1....3....3....2
..2....4....4....2....1....0....2....3....4....0....4....1....0....2....4....2
..2....4....1....4....1....0....1....2....0....1....3....4....0....2....4....1
..0....1....1....3....0....2....2....3....1....4....3....3....1....1....0....0
..0....2....1....2....1....3....1....2....2....3....2....3....0....1....0....0
		

Crossrefs

Column 3 is A221568
Row 2 is A016777
Row 3 is A017257(n-1)
Row 4 is A016778

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>2
k=2: a(n) = 2*a(n-1) +2*a(n-2) +a(n-3) for n>4
k=3: a(n) = 3*a(n-1) +2*a(n-2) -a(n-3) +a(n-4)
k=4: a(n) = 3*a(n-1) +4*a(n-2) +6*a(n-4) +4*a(n-5) +4*a(n-6)
k=5: a(n) = 4*a(n-1) +3*a(n-2) -6*a(n-3) +19*a(n-4) +5*a(n-5) +a(n-6)
k=6: a(n) = 4*a(n-1) +5*a(n-2) -7*a(n-3) +33*a(n-4) +17*a(n-5) +24*a(n-6) -5*a(n-7) +2*a(n-8)
k=7: a(n) = 5*a(n-1) +3*a(n-2) -16*a(n-3) +65*a(n-4) -14*a(n-5) +23*a(n-6) +2*a(n-7) +8*a(n-8)
Empirical for row n:
n=2: a(n) = 3*n + 1
n=3: a(n) = 9*n - 1
n=4: a(n) = 9*n^2 + 6*n + 1
n=5: a(n) = 54*n^2 - 69*n + 63 for n>2
n=6: a(n) = 27*n^3 + 108*n^2 - 252*n + 267 for n>3
n=7: a(n) = 243*n^3 - 351*n^2 + 237*n + 127 for n>2