A221596 T(n,k)=Number of 0..k arrays of length n with each element differing from at least one neighbor by 1 or less.
0, 0, 4, 0, 7, 8, 0, 10, 17, 16, 0, 13, 26, 49, 32, 0, 16, 35, 100, 139, 64, 0, 19, 44, 169, 342, 393, 128, 0, 22, 53, 256, 651, 1210, 1113, 256, 0, 25, 62, 361, 1068, 2715, 4240, 3151, 512, 0, 28, 71, 484, 1593, 5082, 11011, 14898, 8921, 1024, 0, 31, 80, 625, 2226, 8475
Offset: 1
Examples
Some solutions for n=6 k=4 ..0....2....3....3....2....2....1....1....2....4....4....2....0....2....4....1 ..0....1....4....2....3....3....2....1....3....3....4....2....1....3....3....2 ..2....4....4....2....1....0....2....3....4....0....4....1....0....2....4....2 ..2....4....1....4....1....0....1....2....0....1....3....4....0....2....4....1 ..0....1....1....3....0....2....2....3....1....4....3....3....1....1....0....0 ..0....2....1....2....1....3....1....2....2....3....2....3....0....1....0....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..2080
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>2
k=2: a(n) = 2*a(n-1) +2*a(n-2) +a(n-3) for n>4
k=3: a(n) = 3*a(n-1) +2*a(n-2) -a(n-3) +a(n-4)
k=4: a(n) = 3*a(n-1) +4*a(n-2) +6*a(n-4) +4*a(n-5) +4*a(n-6)
k=5: a(n) = 4*a(n-1) +3*a(n-2) -6*a(n-3) +19*a(n-4) +5*a(n-5) +a(n-6)
k=6: a(n) = 4*a(n-1) +5*a(n-2) -7*a(n-3) +33*a(n-4) +17*a(n-5) +24*a(n-6) -5*a(n-7) +2*a(n-8)
k=7: a(n) = 5*a(n-1) +3*a(n-2) -16*a(n-3) +65*a(n-4) -14*a(n-5) +23*a(n-6) +2*a(n-7) +8*a(n-8)
Empirical for row n:
n=2: a(n) = 3*n + 1
n=3: a(n) = 9*n - 1
n=4: a(n) = 9*n^2 + 6*n + 1
n=5: a(n) = 54*n^2 - 69*n + 63 for n>2
n=6: a(n) = 27*n^3 + 108*n^2 - 252*n + 267 for n>3
n=7: a(n) = 243*n^3 - 351*n^2 + 237*n + 127 for n>2
Comments