cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221598 Number of 0..n arrays of length 6 with each element differing from at least one neighbor by 1 or less.

Original entry on oeis.org

64, 393, 1210, 2715, 5082, 8475, 13056, 18987, 26430, 35547, 46500, 59451, 74562, 91995, 111912, 134475, 159846, 188187, 219660, 254427, 292650, 334491, 380112, 429675, 483342, 541275, 603636, 670587, 742290, 818907, 900600, 987531, 1079862
Offset: 1

Views

Author

R. H. Hardin, Jan 20 2013

Keywords

Comments

Row 6 of A221596.

Examples

			Some solutions for n=6:
..0....2....0....4....1....5....5....4....0....3....5....4....5....0....2....3
..1....1....0....4....1....5....5....4....0....4....6....5....6....1....3....2
..6....3....4....4....2....4....2....1....5....5....4....0....6....1....2....1
..6....2....3....3....1....5....2....2....6....6....3....1....1....3....2....0
..0....5....1....1....3....5....3....4....1....2....5....0....2....4....4....4
..1....4....2....1....4....4....2....3....1....3....6....0....3....3....5....4
		

Crossrefs

Cf. A221596.

Formula

Empirical: a(n) = 27*n^3 + 108*n^2 - 252*n + 267 for n>3.
Conjectures from Colin Barker, Aug 09 2018: (Start)
G.f.: x*(64 + 137*x + 22*x^2 - 23*x^3 - 26*x^4 - 10*x^5 - 2*x^6) / (1 - x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>7.
(End)