A221619 Number of n X 4 arrays with each row a permutation of 1..4 having at least as many downsteps as the preceding row.
24, 410, 6120, 85035, 1130256, 14576404, 183919920, 2282493365, 27960543720, 338950264686, 4073680032984, 48607978698655, 576460247379360, 6800560019808680, 79860630502888416, 934066108666694889
Offset: 1
Keywords
Examples
Some solutions for n=3: ..2..4..1..3....2..1..3..4....3..4..1..2....3..4..2..1....2..1..4..3 ..3..2..1..4....2..4..1..3....1..2..4..3....4..1..3..2....3..2..4..1 ..4..3..1..2....3..1..2..4....2..4..3..1....4..3..2..1....1..4..3..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A221623.
Formula
Empirical: a(n) = 24*a(n-1) - 166*a(n-2) + 264*a(n-3) - 121*a(n-4).
Conjectures from Colin Barker, Aug 09 2018: (Start)
G.f.: x*(12 - 11*x)*(2 - 12*x + 11*x^2) / ((1 - x)^2*(1 - 11*x)^2).
a(n) = (4*(4+11^(2+n)) + 5*(1+11^(2+n))*n) / 500.
(End)
Comments