cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221623 T(n,k)=Number of nXk arrays with each row a permutation of 1..k having at least as many downsteps as the preceding row.

Original entry on oeis.org

1, 2, 1, 6, 3, 1, 24, 27, 4, 1, 120, 410, 112, 5, 1, 720, 10055, 6120, 453, 6, 1, 5040, 353654, 738150, 85035, 1818, 7, 1, 40320, 17052210, 148700748, 51149685, 1130256, 7279, 8, 1, 362880, 1075295220, 49096652080, 57614883627, 3451956516, 14576404
Offset: 1

Views

Author

R. H. Hardin Jan 21 2013

Keywords

Comments

Table starts
.1..2.......6...........24.................120.........................720
.1..3......27..........410...............10055......................353654
.1..4.....112.........6120..............738150...................148700748
.1..5.....453........85035............51149685.................57614883627
.1..6....1818......1130256..........3451956516..............21241004664348
.1..7....7279.....14576404........230141263315............7575106427737240
.1..8...29124....183919920......15258126049410.........2638115823321645192
.1..9..116505...2282493365....1009051056050225.......902542985526634773509
.1.10..466030..27960543720...66655625407012320....304529313276100670030616
.1.11.1864131.338950264686.4400938611593606031.101620178879261858322711162

Examples

			Some solutions for n=3 k=4
..3..4..2..1....2..3..1..4....2..1..3..4....3..1..2..4....1..2..4..3
..2..1..4..3....2..3..1..4....4..1..2..3....3..2..4..1....3..4..1..2
..2..1..4..3....4..1..2..3....2..1..4..3....3..2..4..1....2..4..3..1
		

Crossrefs

Column 3 is A014825(n+1)
Row 1 is A000142

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 2*a(n-1) -a(n-2)
k=3: a(n) = 6*a(n-1) -9*a(n-2) +4*a(n-3)
k=4: a(n) = 24*a(n-1) -166*a(n-2) +264*a(n-3) -121*a(n-4)
k=5: a(n) = 120*a(n-1) -4345*a(n-2) +52950*a(n-3) -93340*a(n-4) +44616*a(n-5)
k=6: a(n) = 720*a(n-1) -164746*a(n-2) +12686988*a(n-3) -321204409*a(n-4) +605003244*a(n-5) -296321796*a(n-6)
k=7: a(n) = 5040*a(n-1) -8349390*a(n-2) +5234439280*a(n-3) -936232732785*a(n-4) +51206316902496*a(n-5) -99624831647040*a(n-6) +49349521382400*a(n-7)