cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221649 Tetrahedron E(n,j,k) = k*T(j,k)*p(n-j), where T(j,k) = 1 if k divides j otherwise 0.

This page as a plain text file.
%I A221649 #48 Sep 27 2023 02:42:21
%S A221649 1,1,1,2,2,1,2,1,0,3,3,2,4,1,0,3,1,2,0,4,5,3,6,2,0,6,1,2,0,4,1,0,0,0,
%T A221649 5,7,5,10,3,0,9,2,4,0,8,1,0,0,0,5,1,2,3,0,0,6,11,7,14,5,0,15,3,6,0,12,
%U A221649 2,0,0,0,10,1,2,3,0,0,6,1,0,0,0,0,0,7
%N A221649 Tetrahedron E(n,j,k) = k*T(j,k)*p(n-j), where T(j,k) = 1 if k divides j otherwise 0.
%C A221649 The tetrahedron shows a connection between divisors and partitions.
%C A221649 The sum of all elements of slice n is A066186(n).
%C A221649 The sum of row j of slice n is A221529(n,j).
%C A221649 The sum of column k of slice n is A138785(n,k), the sum of all parts of size k in all partitions of n.
%C A221649 See also the tetrahedron of A221650.
%H A221649 Paolo Xausa, <a href="/A221649/b221649.txt">Table of n, a(n) for n = 1..11480</a> (rows n = 1..40 of the tetrahedron, flattened)
%F A221649 E(n,j,k) = k*A051731(j,k)*A000041(n-j) = A127093(j,k)*A000041(n-j) = k*A221650(n,j,k).
%e A221649 First five slices of tetrahedron are
%e A221649 ---------------------------------------------------
%e A221649 n  j / k   1  2  3  4  5  6      A221529   A066186
%e A221649 ---------------------------------------------------
%e A221649 1  1       1,                       1         1
%e A221649 ...................................................
%e A221649 2  1       1,                       1
%e A221649 2  2       1, 2,                    3         4
%e A221649 ...................................................
%e A221649 3  1       2,                       2
%e A221649 3  2       1, 2,                    3
%e A221649 3  3       1, 0, 3,                 4         9
%e A221649 ...................................................
%e A221649 4  1       3,                       3
%e A221649 4  2       2, 4,                    6
%e A221649 4  3       1, 0, 3,                 4
%e A221649 4  4       1, 2, 0, 4,              7        20
%e A221649 ...................................................
%e A221649 5  1       5,                       5
%e A221649 5  2       3, 6,                    9
%e A221649 5, 3,      2, 0, 6,                 8
%e A221649 5, 4,      1, 2, 0, 4,              7
%e A221649 5, 5,      1, 0, 0, 0, 5,           6        35
%e A221649 ...................................................
%e A221649 .
%e A221649 From _Omar E. Pol_, Jul 26 2021: (Start)
%e A221649 The slices of the tetrahedron appear in the upper zone of the following table (formed by four zones) which shows the correspondence between divisors and parts (n = 1..5):
%e A221649 .
%e A221649 |---|---------|-----|-------|---------|-----------|-------------|
%e A221649 | n |         |  1  |   2   |    3    |     4     |      5      |
%e A221649 |---|---------|-----|-------|---------|-----------|-------------|
%e A221649 |   |    -    |     |       |         |           |  5          |
%e A221649 | C |    -    |     |       |         |  3        |  3 6        |
%e A221649 | O |    -    |     |       |  2      |  2 4      |  2 0 6      |
%e A221649 | N | A127093 |     |  1    |  1 2    |  1 0 3    |  1 2 0 4    |
%e A221649 | D | A127093 |  1  |  1 2  |  1 0 3  |  1 2 0 4  |  1 0 0 0 5  |
%e A221649 |---|---------|-----|-------|---------|-----------|-------------|
%e A221649 .
%e A221649 |---|---------|-----|-------|---------|-----------|-------------|
%e A221649 |   | A127093 |     |       |         |           |  1          |
%e A221649 |   | A127093 |     |       |         |           |  1          |
%e A221649 |   | A127093 |     |       |         |           |  1          |
%e A221649 |   | A127093 |     |       |         |           |  1          |
%e A221649 | D | A127093 |     |       |         |           |  1          |
%e A221649 | I |---------|-----|-------|---------|-----------|-------------|
%e A221649 | V | A127093 |     |       |         |  1        |  1 2        |
%e A221649 | I | A127093 |     |       |         |  1        |  1 2        |
%e A221649 | S | A127093 |     |       |         |  1        |  1 2        |
%e A221649 | O |---------|-----|-------|---------|-----------|-------------|
%e A221649 | R | A127093 |     |       |  1      |  1 2      |  1 0 3      |
%e A221649 | S | A127093 |     |       |  1      |  1 2      |  1 0 3      |
%e A221649 |   |---------|-----|-------|---------|-----------|-------------|
%e A221649 |   | A127093 |     |  1    |  1 2    |  1 0 3    |  1 2 0 4    |
%e A221649 |   |---------|-----|-------|---------|-----------|-------------|
%e A221649 |   | A127093 |  1  |  1 2  |  1 0 3  |  1 2 0 4  |  1 0 0 0 5  |
%e A221649 |---|---------|-----|-------|---------|-----------|-------------|
%e A221649 .
%e A221649 |---|---------|-----|-------|---------|-----------|-------------|
%e A221649 |   | A138785 |  1  |  2 2  |  4 2 3  |  7 6 3 4  | 12 8 6 4 5  |
%e A221649 |   |         |  =  |  = =  |  = = =  |  = = = =  |  = = = = =  |
%e A221649 | L | A002260 |  1  |  1 2  |  1 2 3  |  1 2 3 4  |  1 2 3 4 5  |
%e A221649 | I |         |  *  |  * *  |  * * *  |  * * * *  |  * * * * *  |
%e A221649 | N | A066633 |  1  |  2 1  |  4 1 1  |  7 3 1 1  | 12 4 2 1 1  |
%e A221649 | K |         |  |  |  |\|  |  |\|\|  |  |\|\|\|  |  |\|\|\|\|  |
%e A221649 |   | A181187 |  1  |  3 1  |  6 2 1  | 12 5 2 1  | 20 8 4 2 1  |
%e A221649 |---|---------|-----|-------|---------|-----------|-------------|
%e A221649 .
%e A221649 |---|---------|-----|-------|---------|-----------|-------------|
%e A221649 | P |         |  1  |  1 1  |  1 1 1  |  1 1 1 1  |  1 1 1 1 1  |
%e A221649 | A |         |     |  2    |  2 1    |  2 1 1    |  2 1 1 1    |
%e A221649 | R |         |     |       |  3      |  3 1      |  3 1 1      |
%e A221649 | T |         |     |       |         |  2 2      |  2 2 1      |
%e A221649 | I |         |     |       |         |  4        |  4 1        |
%e A221649 | T |         |     |       |         |           |  3 2        |
%e A221649 | I |         |     |       |         |           |  5          |
%e A221649 | O |         |     |       |         |           |             |
%e A221649 | N |         |     |       |         |           |             |
%e A221649 | S |         |     |       |         |           |             |
%e A221649 |---|---------|-----|-------|---------|-----------|-------------|
%e A221649 .
%e A221649 The upper zone is a condensed version of the "divisors" zone.
%e A221649 The above table is the table of A340011 upside down.
%e A221649 For more information about the correspondence divisor/part see A338156. (End)
%t A221649 A221649row[n_]:=Flatten[Table[If[Divisible[j,k],PartitionsP[n-j]k,0],{j,n},{k,j}]];Array[A221649row,10] (* _Paolo Xausa_, Sep 26 2023 *)
%Y A221649 Nonzero terms give A340057.
%Y A221649 Cf. A000005, A000041, A000203, A027750, A051731, A066186, A127093, A138785, A221529, A221650, A237593, A336811, A336812, A338156, A340011, A340031, A340032, A340035, A340056.
%K A221649 nonn,tabf
%O A221649 1,4
%A A221649 _Omar E. Pol_, Jan 21 2013
%E A221649 a(18)-a(19) and a(28)-a(29) corrected by _Paolo Xausa_, Sep 26 2023