This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A221650 #43 Sep 26 2023 20:26:11 %S A221650 1,1,1,1,2,1,1,1,0,1,3,2,2,1,0,1,1,1,0,1,5,3,3,2,0,2,1,1,0,1,1,0,0,0, %T A221650 1,7,5,5,3,0,3,2,2,0,2,1,0,0,0,1,1,1,1,0,0,1,11,7,7,5,0,5,3,3,0,3,2,0, %U A221650 0,0,2,1,1,1,0,0,1,1,0,0,0,0,0,1 %N A221650 Tetrahedron P(n,j,k) = T(j,k)*p(n-j), where T(j,k) = 1 if k divides j otherwise 0. %C A221650 This tetrahedron shows a connection between divisors and partitions. %C A221650 Conjecture 1: P(n,j,k) is the number of partitions of n that contain at least m parts of size k, where m = j/k, if k divides j otherwise P(n,j,k) = 0. %C A221650 Conjecture 2: P(n,j,k) is the number of parts that are the m-th part of size k in all partitions of n, where m = j/k, if k divides j otherwise P(n,j,k) = 0. %C A221650 The sum of all elements of slice n is A006128(n). %C A221650 The sum of row j of slice n is A221530(n,j). %C A221650 The sum of column k of slice n is A066633(n,k). %C A221650 See also the tetrahedron of A221649. %H A221650 Paolo Xausa, <a href="/A221650/b221650.txt">Table of n, a(n) for n = 1..11480</a> (rows n = 1..40 of the tetrahedron, flattened) %F A221650 P(n,j,k) = A051731(j,k)*A000041(n-j) = (1/k)*A221649(n,j,k). %e A221650 First six slices of tetrahedron are %e A221650 --------------------------------------------------- %e A221650 n j k: 1 2 3 4 5 6 A221530 A006128 %e A221650 --------------------------------------------------- %e A221650 1 1 1, 1 1 %e A221650 ................................................... %e A221650 2 1 1, 1 %e A221650 2 2 1, 1, 2 3 %e A221650 ................................................... %e A221650 3 1 2, 2 %e A221650 3 2 1, 1, 2 %e A221650 3 3 1, 0, 1, 2 6 %e A221650 ................................................... %e A221650 4 1 3, 3 %e A221650 4 2 2, 2, 4 %e A221650 4 3 1, 0, 1, 2 %e A221650 4 4 1, 1, 0, 1, 3 12 %e A221650 ................................................... %e A221650 5 1 5, 5 %e A221650 5 2 3, 3, 6 %e A221650 5 3 2, 0, 2, 4 %e A221650 5 4 1, 1, 0, 1, 3 %e A221650 5 5 1, 0, 0, 0, 1, 2 20 %e A221650 ................................................... %e A221650 6 1 7, 7 %e A221650 6 2 5, 5, 10 %e A221650 6 3 3, 0, 3, 6 %e A221650 6 4 2, 2, 0, 2, 6 %e A221650 6 5 1, 0, 0, 0, 1, 2 %e A221650 6 6 1, 1, 1, 0, 0, 1 4 35 %e A221650 ................................................... %t A221650 A221650row[n_]:=Flatten[Table[If[Divisible[j,k],PartitionsP[n-j],0],{j,n},{k,j}]];Array[A221650row,10] (* _Paolo Xausa_, Sep 26 2023 *) %Y A221650 Cf. A000005, A006128, A027750, A051731, A066633, A127093, A221530, A221649. %K A221650 nonn,tabf %O A221650 1,5 %A A221650 _Omar E. Pol_, Jan 21 2013