cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221650 Tetrahedron P(n,j,k) = T(j,k)*p(n-j), where T(j,k) = 1 if k divides j otherwise 0.

This page as a plain text file.
%I A221650 #43 Sep 26 2023 20:26:11
%S A221650 1,1,1,1,2,1,1,1,0,1,3,2,2,1,0,1,1,1,0,1,5,3,3,2,0,2,1,1,0,1,1,0,0,0,
%T A221650 1,7,5,5,3,0,3,2,2,0,2,1,0,0,0,1,1,1,1,0,0,1,11,7,7,5,0,5,3,3,0,3,2,0,
%U A221650 0,0,2,1,1,1,0,0,1,1,0,0,0,0,0,1
%N A221650 Tetrahedron P(n,j,k) = T(j,k)*p(n-j), where T(j,k) = 1 if k divides j otherwise 0.
%C A221650 This tetrahedron shows a connection between divisors and partitions.
%C A221650 Conjecture 1: P(n,j,k) is the number of partitions of n that contain at least m parts of size k, where m = j/k, if k divides j otherwise P(n,j,k) = 0.
%C A221650 Conjecture 2: P(n,j,k) is the number of parts that are the m-th part of size k in all partitions of n, where m = j/k, if k divides j otherwise P(n,j,k) = 0.
%C A221650 The sum of all elements of slice n is A006128(n).
%C A221650 The sum of row j of slice n is A221530(n,j).
%C A221650 The sum of column k of slice n is A066633(n,k).
%C A221650 See also the tetrahedron of A221649.
%H A221650 Paolo Xausa, <a href="/A221650/b221650.txt">Table of n, a(n) for n = 1..11480</a> (rows n = 1..40 of the tetrahedron, flattened)
%F A221650 P(n,j,k) = A051731(j,k)*A000041(n-j) = (1/k)*A221649(n,j,k).
%e A221650 First six slices of tetrahedron are
%e A221650 ---------------------------------------------------
%e A221650 n  j    k: 1  2  3  4  5  6      A221530   A006128
%e A221650 ---------------------------------------------------
%e A221650 1  1       1,                       1         1
%e A221650 ...................................................
%e A221650 2  1       1,                       1
%e A221650 2  2       1, 1,                    2         3
%e A221650 ...................................................
%e A221650 3  1       2,                       2
%e A221650 3  2       1, 1,                    2
%e A221650 3  3       1, 0, 1,                 2         6
%e A221650 ...................................................
%e A221650 4  1       3,                       3
%e A221650 4  2       2, 2,                    4
%e A221650 4  3       1, 0, 1,                 2
%e A221650 4  4       1, 1, 0, 1,              3        12
%e A221650 ...................................................
%e A221650 5  1       5,                       5
%e A221650 5  2       3, 3,                    6
%e A221650 5  3       2, 0, 2,                 4
%e A221650 5  4       1, 1, 0, 1,              3
%e A221650 5  5       1, 0, 0, 0, 1,           2        20
%e A221650 ...................................................
%e A221650 6  1       7,                       7
%e A221650 6  2       5, 5,                   10
%e A221650 6  3       3, 0, 3,                 6
%e A221650 6  4       2, 2, 0, 2,              6
%e A221650 6  5       1, 0, 0, 0, 1,           2
%e A221650 6  6       1, 1, 1, 0, 0, 1         4        35
%e A221650 ...................................................
%t A221650 A221650row[n_]:=Flatten[Table[If[Divisible[j,k],PartitionsP[n-j],0],{j,n},{k,j}]];Array[A221650row,10] (* _Paolo Xausa_, Sep 26 2023 *)
%Y A221650 Cf. A000005, A006128, A027750, A051731, A066633, A127093, A221530, A221649.
%K A221650 nonn,tabf
%O A221650 1,5
%A A221650 _Omar E. Pol_, Jan 21 2013