A221683 T(n,k)=Number of 0..k arrays of length n with each element differing from at least one neighbor by 1 or less, starting with 0.
0, 0, 2, 0, 2, 4, 0, 2, 5, 8, 0, 2, 5, 14, 16, 0, 2, 5, 20, 40, 32, 0, 2, 5, 26, 68, 113, 64, 0, 2, 5, 32, 100, 241, 320, 128, 0, 2, 5, 38, 133, 418, 844, 906, 256, 0, 2, 5, 44, 166, 636, 1692, 2966, 2565, 512, 0, 2, 5, 50, 199, 891, 2856, 6932, 10413, 7262, 1024, 0, 2, 5, 56, 232
Offset: 1
Examples
Some solutions for n=6 k=4 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..1....0....1....1....1....1....0....0....0....0....1....0....0....0....0....1 ..2....0....0....0....4....1....4....4....0....2....1....1....1....0....0....2 ..1....2....3....1....3....2....3....3....1....3....3....1....2....0....1....3 ..1....1....4....2....2....1....2....3....4....2....3....1....1....0....1....0 ..0....2....4....2....1....0....3....4....4....2....4....2....1....1....2....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..2080
Crossrefs
Row 4 is A016933
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>2
k=2: a(n) = 2*a(n-1) +2*a(n-2) +a(n-3)
k=3: a(n) = 3*a(n-1) +2*a(n-2) -a(n-3) +a(n-4)
k=4: a(n) = 3*a(n-1) +4*a(n-2) +6*a(n-4) +4*a(n-5) +4*a(n-6)
k=5: a(n) = 4*a(n-1) +3*a(n-2) -6*a(n-3) +19*a(n-4) +5*a(n-5) +a(n-6)
k=6: a(n) = 4*a(n-1) +5*a(n-2) -7*a(n-3) +33*a(n-4) +17*a(n-5) +24*a(n-6) -5*a(n-7) +2*a(n-8)
k=7: a(n) = 5*a(n-1) +3*a(n-2) -16*a(n-3) +65*a(n-4) -14*a(n-5) +23*a(n-6) +2*a(n-7) +8*a(n-8)
Empirical for row n:
n=1: a(n) = 0
n=2: a(n) = 2
n=3: a(n) = 5 for n>1
n=4: a(n) = 6*n + 2
n=5: a(n) = 33*n - 32 for n>3
n=6: a(n) = 18*n^2 + 57*n - 99 for n>4
n=7: a(n) = 153*n^2 - 213*n + 96 for n>3
Comments