A221686 Number of 0..n arrays of length 7 with each element differing from at least one neighbor by 1 or less, starting with 0.
64, 320, 844, 1692, 2856, 4326, 6102, 8184, 10572, 13266, 16266, 19572, 23184, 27102, 31326, 35856, 40692, 45834, 51282, 57036, 63096, 69462, 76134, 83112, 90396, 97986, 105882, 114084, 122592, 131406, 140526, 149952, 159684, 169722, 180066, 190716
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..1....0....1....0....0....1....0....1....0....0....0....0....0....0....1....1 ..2....1....1....1....2....5....0....2....3....1....4....3....2....1....3....2 ..3....1....0....1....1....5....0....3....2....1....3....3....3....1....2....2 ..0....0....4....0....4....5....5....5....3....2....5....4....5....3....1....3 ..1....2....5....2....4....4....5....6....4....4....4....3....5....4....6....4 ..2....1....5....3....3....5....4....6....3....4....4....2....4....3....6....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A221683.
Formula
Empirical: a(n) = 153*n^2 - 213*n + 96 for n>3.
Conjectures from Colin Barker, Aug 10 2018: (Start)
G.f.: 2*x*(32 + 64*x + 38*x^2 + 28*x^3 - 4*x^4 - 5*x^5) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>6.
(End)
Comments