This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A221697 #33 Aug 03 2022 10:48:34 %S A221697 2,22,121,202,211,1021,1201,2011,2111,2221,2222,10201,10211,12011, %T A221697 12101,12211,12221,20011,20021,20101,20201,20222,21001,21011,21101, %U A221697 21121,21211,21221,22111,22121,101021,101221,102001,102101,102121,110221,111121,111211,111221,112111,112121 %N A221697 Numbers whose largest digit of all divisors is 2. %C A221697 Also numbers k such that the largest digit of the concatenation of all the divisors (A037278) of k is 2. %C A221697 Numbers k such that A209928(k) = 2. %C A221697 Union of A221698 and A106100. %H A221697 Michael S. Branicky, <a href="/A221697/b221697.txt">Table of n, a(n) for n = 1..10000</a> %e A221697 10201 is a term because the largest digit of all the divisors of 10201 (1, 101, 10201) is 2. %p A221697 isA221697 := proc(n) %p A221697 local dgs,d; %p A221697 dgs := {} ; %p A221697 for d in numtheory[divisors](n) do %p A221697 dgs := dgs union convert(convert(d,base,10),set) ; %p A221697 end do: %p A221697 if max(op(dgs)) = 2 then %p A221697 true; %p A221697 else %p A221697 false; %p A221697 end if; %p A221697 end proc: %p A221697 for n from 2 to 112121 do %p A221697 if isA221697(n) then %p A221697 printf("%d,",n) ; %p A221697 end if; %p A221697 end do: # _R. J. Mathar_, Jan 30 2013 %t A221697 Select[Range[115000],Max[Flatten[IntegerDigits/@Divisors[#]]]==2&] (* _Harvey P. Dale_, Dec 15 2014 *) %o A221697 (Python) %o A221697 from sympy import divisors %o A221697 def ok(n): return '2' == max("".join(map(str, divisors(n)))) %o A221697 print([m for m in range(1, 112122) if ok(m)]) # _Michael S. Branicky_, Feb 22 2021 %o A221697 (Python) %o A221697 from sympy import isprime, divisors %o A221697 from itertools import count, islice, product %o A221697 def agen(): # generator of terms %o A221697 yield 2 %o A221697 for d in count(2): %o A221697 for f in "12": %o A221697 for mid in product("012", repeat=d-2): %o A221697 for e in "12": # ending in zero has 5 as divisor %o A221697 s = f+"".join(mid)+e %o A221697 t = int(s) %o A221697 if "2" in s and isprime(t): yield t; continue %o A221697 if "2" == max("".join(map(str, divisors(t)))): yield t %o A221697 print(list(islice(agen(), 50))) # _Michael S. Branicky_, Aug 03 2022 %Y A221697 Cf. A037278, A106100, A209928 (largest digit of all divisors of n), A221698. %K A221697 nonn,base %O A221697 1,1 %A A221697 _Jaroslav Krizek_, Jan 22 2013, corrected Jan 29 2013