cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221706 Kochanski approximates to sqrt(2) starting with R_0=3, S_0=2.

This page as a plain text file.
%I A221706 #10 Oct 20 2014 17:15:18
%S A221706 2,4,4,15,17,77,101,119,143,250,362,1401,31168,88629,184654,259251,
%T A221706 298769,4196069,38538873,616984562,1975413034,5345718056,27843871196,
%U A221706 54516286512,334398528973,445879679625,495957494385,2450869042060,2629541150528,4088114099884
%N A221706 Kochanski approximates to sqrt(2) starting with R_0=3, S_0=2.
%H A221706 Henryk Fuks, <a href="http://arxiv.org/abs/1111.1739">Adam Adamandy Kochanski's approximations of pi: reconstruction of the algorithm</a>, arXiv preprint arXiv:1111.1739, 2011. Math. Intelligencer, Vol. 34 (No. 4), 2012, pp. 40-45.
%F A221706 Definitions 1 and 2 of Fuks (2011) give formulas.
%o A221706 (PARI)
%o A221706 galpha(alpha, R, S) = {floor((alpha - floor(alpha))/(R - alpha*S));}
%o A221706 fuks() = { n = 29; default(realprecision, 200); alpha = sqrt(2); R = 3; S = 2; x = galpha(alpha, R, S); print1(x, ", "); for (i=1, n, R = R*(x+1) + floor(alpha); S = S*(x+1) + 1; x = galpha(alpha, R, S); print1(x, ", "););}
%o A221706 \\ _Michel Marcus_, Feb 07 2013
%Y A221706 Cf. A191642.
%K A221706 nonn
%O A221706 0,1
%A A221706 _N. J. A. Sloane_, Jan 23 2013
%E A221706 More terms from _Michel Marcus_, Feb 07 2013