This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A221712 #37 May 23 2025 11:53:02 %S A221712 3,3,1,9,7,7,3,1,7,7,4,7,1,4,2,1,6,6,5,3,2,3,5,5,6,8,5,7,6,4,9,8,8,7, %T A221712 9,6,6,4,6,8,5,5,4,5,8,5,6,5,2,9,8,5,8,4,9,1,5,3,9,4,0,7,2,7,9,5,0,2, %U A221712 6,3,3,1,0,4,2,6,1,1,8,1,4,9,7,3,7,5,5 %N A221712 Hardy-Littlewood constant for x^2+x+41. %D A221712 Henri Cohen, Number Theory, Vol II: Analytic and Modern Tools, Springer (Graduate Texts in Mathematics 240), 2007. %D A221712 Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 265-266. %H A221712 Christian Axler and Mehdi Hassani, <a href="http://math.colgate.edu/~integers/v53/v53.mail.html">Carleman's inequality over prime numbers</a>, Integers (2021) Vol. 21, #A53. %H A221712 Karim Belabas and Henri Cohen, <a href="/A221712/a221712.gp.txt">Computation of the Hardy-Littlewood constant for quadratic polynomials</a>, PARI/GP script, 2020. %H A221712 Lea Beneish and Christopher Keyes, <a href="https://arxiv.org/abs/2405.06584">How often does a cubic hypersurface have a rational point?</a>, arXiv:2405.06584 [math.NT], 2024. See p. 23. %H A221712 David Broadhurst, <a href="https://arxiv.org/abs/2401.08997">Five families of rapidly convergent evaluations of zeta values</a>, arXiv:2401.08997 [math.NT], 2024. %H A221712 Henri Cohen, <a href="http://www.math.u-bordeaux.fr/~cohen/hardylw.dvi">High-precision calculation of Hardy-Littlewood constants</a>, (1998). %H A221712 Henri Cohen, <a href="/A221712/a221712.pdf">High precision computation of Hardy-Littlewood constants</a>. [Cached pdf version, with permission] %H A221712 Stéphane Vinatier and William Reginald Alcorn, <a href="https://doi.org/10.4171/MAG/248">Mathematics as seen by an artist: Inspiring mathematical objects</a>, Eur. Math. Soc. Mag. (2025) Vol. 135, 20-31. See p. 26. %e A221712 3.31977317747142166532355685764988796646855... %o A221712 (PARI) \\ See Belabas, Cohen link. Run as HardyLittlewood2(x^2+x+41)/2 after setting the required precision. %Y A221712 Cf. A005846, A056561, A202018, A221713, A319906, A331876, A331877. %K A221712 nonn,cons %O A221712 1,1 %A A221712 _N. J. A. Sloane_, Jan 26 2013 %E A221712 More terms from _Hugo Pfoertner_, Jan 31 2020