This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A221762 #74 Sep 08 2022 08:46:04 %S A221762 1,2,22,41,439,818,8758,16319,174721,325562,3485662,6494921,69538519, %T A221762 129572858,1387284718,2584962239,27676155841,51569671922,552135832102, %U A221762 1028808476201,11015040486199,20524599852098,219748673891878,409463188565759 %N A221762 Numbers m such that 11*m^2 + 5 is a square. %C A221762 Corresponding squares are: 16, 49, 5329, 18496, 2119936, 7360369, 843728209, 2929407376, ... (subsequence of A016778). %C A221762 The Diophantine equation 11*x^2+k = y^2, for |k|<11, has integer solutions with the following k values: %C A221762 k = -10, the nonnegative x values are in A198947; %C A221762 k = -8, " 2*A075839; %C A221762 k = -7, " A221763; %C A221762 k = -2, " A075839; %C A221762 k = 1, " A001084; %C A221762 k = 4, " A075844; %C A221762 k = 5, " this sequence; %C A221762 k = 9, " 3*A001084. %C A221762 Also, the Diophantine equation h*x^2+5 = y^2 has infinitely many integer solutions for h = 5, 11, 19, 20, 29, 31, 41, 44, 55, 59, ... %C A221762 a(n+1)/a(n) tends alternately to (1+sqrt(11))^2/10 and (4+sqrt(11))^2/5. %C A221762 a(n+2)/a(n) tends to A176395^2/2. %H A221762 Bruno Berselli, <a href="/A221762/b221762.txt">Table of n, a(n) for n = 1..500</a> %H A221762 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,20,0,-1). %F A221762 G.f.: x*(1+2*x+2*x^2+x^3)/(1-20*x^2+x^4). %F A221762 a(n) = -a(1-n) = ((-11*(-1)^n+4*t)*(10+3*t)^floor(n/2)-(11*(-1)^n+4*t)*(10-3*t)^floor(n/2))/22, where t=sqrt(11). %F A221762 a(n) = 20*a(n-2) - a(n-4) for n>4, a(1)=1, a(2)=2, a(3)=22, a(4)=41. %F A221762 a(n)*a(n-3)-a(n-1)*a(n-2) = -(3/2)*(9-7*(-1)^n). %F A221762 a(n+1) + a(n-1) = A198949(n), with a(0)=-1. %F A221762 2*a(n-1) - a(n) = A001084(n/2-1) for even n. %p A221762 A221762:=proc(q) %p A221762 local n; %p A221762 for n from 1 to q do if type(sqrt(11*n^2+5), integer) then print(n); %p A221762 fi; od; end: %p A221762 A221762(1000); # _Paolo P. Lava_, Feb 19 2013 %t A221762 LinearRecurrence[{0, 20, 0, -1}, {1, 2, 22, 41}, 24] %t A221762 CoefficientList[Series[(1 + 2 x + 2 x^2 + x^3)/(1 - 20 x^2 + x^4), {x, 0, 30}], x] (* _Vincenzo Librandi_, Aug 18 2013 *) %o A221762 (Maxima) makelist(expand(((-11*(-1)^n+4*sqrt(11))*(10+3*sqrt(11))^floor(n/2)-(11*(-1)^n+4*sqrt(11))*(10-3*sqrt(11))^floor(n/2))/22), n, 1, 24); %o A221762 (Magma) m:=24; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x+2*x^2+x^3)/(1-20*x^2+x^4))); %o A221762 (Magma) I:=[1,2,22,41]; [n le 4 select I[n] else 20*Self(n-2)-Self(n-4): n in [1..30]]; // _Vincenzo Librandi_, Aug 18 2013 %Y A221762 Cf. A001084, A075839, A075844, A198947, A198949, A221763. %Y A221762 Cf. A049629 (numbers m such that 20*m^2 + 5 is a square), A075796 (numbers m such that 5*m^2 + 5 is a square). %K A221762 nonn,easy %O A221762 1,2 %A A221762 _Bruno Berselli_, Jan 24 2013