This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A221763 #48 Sep 08 2022 08:46:04 %S A221763 1,4,16,79,319,1576,6364,31441,126961,627244,2532856,12513439, %T A221763 50530159,249641536,1008070324,4980317281,20110876321,99356704084, %U A221763 401209456096,1982153764399,8004078245599,39543718583896,159680355455884,788892217913521 %N A221763 Numbers m such that 11*m^2 - 7 is a square. %C A221763 See the first comment of A221762. %C A221763 a(n) == 1 (mod 3). %C A221763 a(n+1)/a(n) tends alternately to (2+sqrt(11))^2/7 and (5+sqrt(11))^2/14; a(n+2)/a(n) tends to A176395^2/2. %C A221763 Positive values of x (or y) satisfying x^2 - 20xy + y^2 + 63 = 0. - _Colin Barker_, Feb 18 2014 %H A221763 Bruno Berselli, <a href="/A221763/b221763.txt">Table of n, a(n) for n = 1..500</a> %H A221763 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,20,0,-1). %F A221763 G.f.: x*(1+4*x-4*x^2-x^3)/(1-20*x^2+x^4). %F A221763 a(n) = ((11+2*t*(-1)^n)*(10-3*t)^floor(n/2)+(11-2*t*(-1)^n)*(10+3*t)^floor(n/2))/22, where t=sqrt(11). %F A221763 a(n)*a(n-3)-a(n-1)*a(n-2) = (3/2)*(9+(-1)^n). %p A221763 A221763:=proc(q) %p A221763 local n; %p A221763 for n from 1 to q do if type(sqrt(11*n^2-7), integer) then print(n); %p A221763 fi; od; end: %p A221763 A221763(1000); # _Paolo P. Lava_, Feb 19 2013 %t A221763 LinearRecurrence[{0, 20, 0, -1}, {1, 4, 16, 79}, 24] %t A221763 CoefficientList[Series[(1 + 4 x - 4 x^2 - x^3)/(1 - 20 x^2 + x^4), {x, 0, 25}], x] (* _Vincenzo Librandi_, Aug 18 2013 *) %o A221763 (Magma) m:=24; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+4*x-4*x^2-x^3)/(1-20*x^2+x^4))); %o A221763 (Maxima) makelist(expand(((11+2*sqrt(11)*(-1)^n)*(10-3*sqrt(11))^floor(n/2)+(11-2*sqrt(11)*(-1)^n)*(10+3*sqrt(11))^floor(n/2))/22), n, 1, 24); %o A221763 (Magma) I:=[1,4,16,79]; [n le 4 select I[n] else 20*Self(n-2)-Self(n-4): n in [1..25]]; // _Vincenzo Librandi_, Aug 18 2013 %Y A221763 Cf. A221762. %K A221763 nonn,easy %O A221763 1,2 %A A221763 _Bruno Berselli_, Jan 24 2013