This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A221836 #17 May 04 2025 14:38:52 %S A221836 0,0,0,0,0,0,0,0,1,0,0,0,1,1,2,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1, %T A221836 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,1,2,0,0,0,0,0,0,0,0,0,0,0,0,0, %U A221836 0,0,1,0,0,0,1,1,0,0,0,0,0,1,1,0,0,0,0 %N A221836 Triangle in which m-th term of n-th row is the number of integer Heron triangles with two of the sides having lengths n, m. %C A221836 If the primes divisors of nm congruent to 1 mod 4 have multiplicities e_1, ..., e_r, then a(n, m) <= (3 + (-1)^(nm))/2 * (Product(2*e_j - 1, j = 1..r) - 1). %H A221836 Sourav Sen Gupta, Nirupam Kar, Subhamoy Maitra, Santanu Sarkar, and Pantelimon Stanica, <a href="http://www.emis.de/journals/INTEGERS/papers/n3/n3.Abstract.html">Counting Heron triangles with Constraints</a>, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 13, Paper A3, 2013. %H A221836 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HeronianTriangle.html">Heronian Triangle.</a> %e A221836 Triangle begins %e A221836 0; %e A221836 0, 0; %e A221836 0, 0, 0; %e A221836 0, 0, 1, 0; %e A221836 0, 0, 1, 1, 2; %e A221836 0, 0, 0, 0, 1, 0; %e A221836 0, 0, 0, 0, 0, 0, 0; %e A221836 0, 0, 0, 0, 1, 1, 0, 0; %e A221836 0, 0, 0, 0, 0, 0, 0, 0, 0; %e A221836 0, 0, 0, 0, 0, 1, 0, 1, 1, 2. %o A221836 (Sage) %o A221836 def A221836(n, m) : %o A221836 count = 0 %o A221836 for k in range(abs(n-m)+1, n+m) : %o A221836 s = (n + m + k)/2 %o A221836 Asq = s * (s-n) * (s-m) * (s-k) %o A221836 if Asq.is_integral() and Asq.is_square() : count += 1 %o A221836 return count %K A221836 nonn,tabl %O A221836 1,15 %A A221836 _Eric M. Schmidt_, Jan 26 2013