A221838 Number of integer Heron triangles of height n.
0, 0, 2, 2, 2, 2, 2, 6, 6, 2, 2, 20, 2, 2, 20, 12, 2, 6, 2, 20, 20, 2, 2, 56, 6, 2, 12, 20, 2, 20, 2, 20, 20, 2, 20, 56, 2, 2, 20, 56, 2, 20, 2, 20, 56, 2, 2, 110, 6, 6, 20, 20, 2, 12, 20, 56, 20, 2, 2, 182, 2, 2, 56, 30, 20, 20, 2, 20, 20, 20, 2, 156, 2, 2
Offset: 1
Keywords
Examples
For n = 3, the two triangles have side lengths (3, 4, 5) and (5, 5, 8), with areas 6 and 12 respectively.
Links
- Eric M. Schmidt, Table of n, a(n) for n = 1..10000
- Sourav Sen Gupta, Nirupam Kar, Subhamoy Maitra, Santanu Sarkar, and Pantelimon Stanica, Counting Heron triangles with Constraints, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 13, Paper A3, 2013.
- Eric Weisstein's World of Mathematics, Heronian Triangle.
Programs
-
Sage
def A221838(n) : pyth = (number_of_divisors(n^2 if n%2==1 else (n/2)^2) - 1) // 2; return pyth^2 + pyth