A221842 Number of ways to dissect a square into n squares.
1, 0, 0, 1, 0, 4, 8, 36, 105, 384, 1340, 4975, 17676, 69052, 270716, 1093218, 4455047, 18246018
Offset: 1
Examples
For n = 6 there are a(6) = 4 ways: +-+-+-+ +-+-+-+ +-+---+ +---+-+ | | | | | | | | | | | | | | +-+-+-+ +-+-+-+ +-+ | | +-+ | | | | | | | | | | | | +-+ | | +-+ +-+-+-+ +-+-+-+ | | | | | | | | | | | | | | +-+---+ +---+-+ +-+-+-+ +-+-+-+
Links
- Ed Wynn, Exhaustive generation of Mrs Perkins's quilt square dissections for low orders, arXiv:1308.5420
Crossrefs
Cf. A221841.
Extensions
a(10) corrected (thanks to Ed Wynn) by Geoffrey H. Morley, Aug 02 2013
More terms from Wynn, 2013. - N. J. A. Sloane, Nov 29 2013