cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221844 Number of prime dissections of an n X n square into integer-sided squares up to symmetry.

This page as a plain text file.
%I A221844 #31 Sep 06 2021 04:29:35
%S A221844 1,1,2,11,76,1490,56977,4495010,669203525
%N A221844 Number of prime dissections of an n X n square into integer-sided squares up to symmetry.
%C A221844 A dissection into squares was called prime by _J. H. Conway_ in 1964 if the GCD of the sides of the squares is 1.
%H A221844 J. H. Conway, <a href="http://dx.doi.org/10.1017/S0305004100037877">Mrs. Perkins's quilt</a>, Proc. Camb. Phil. Soc., 60 (1964), 363-368.
%H A221844 Ed Wynn, <a href="http://arxiv.org/abs/1308.5420">Exhaustive generation of Mrs Perkins's quilt square dissections for low orders</a>, 2013, arXiv:1308.5420
%e A221844 For n = 4 there are a(4) = 11 dissections:
%e A221844 +-+-+-+-+ +---+-+-+ +-+---+-+ +-+-+-+-+ +---+---+ +---+-+-+
%e A221844 | | | | | |   | | | | |   | | | | | | | |   |   | |   | | |
%e A221844 +-+-+-+-+ |   +-+-+ +-+   +-+ +-+-+-+-+ |   |   | |   +-+-+
%e A221844 | | | | | |   | | | | |   | | | |   | | |   |   | |   |   |
%e A221844 +-+-+-+-+ +-+-+-+-+ +-+-+-+-+ +-+   +-+ +-+-+-+-+ +-+-+   |
%e A221844 | | | | | | | | | | | | | | | | |   | | | | | | | | | |   |
%e A221844 +-+-+-+-+ +-+-+-+-+ +-+-+-+-+ +-+-+-+-+ +-+-+-+-+ +-+-+-+-+
%e A221844 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
%e A221844 +-+-+-+-+ +-+-+-+-+ +-+-+-+-+ +-+-+-+-+ +-+-+-+-+ +-+-+-+-+
%e A221844 ...
%e A221844 +---+-+-+ +-+---+-+ +---+---+ +---+---+ +-----+-+
%e A221844 |   | | | | |   | | |   |   | |   |   | |     | |
%e A221844 |   +-+-+ +-+   +-+ |   |   | |   |   | |     +-+
%e A221844 |   | | | | |   | | |   |   | |   |   | |     | |
%e A221844 +-+-+-+-+ +-+---+-+ +---+-+-+ +-+-+-+-+ |     +-+
%e A221844 | | |   | | |   | | |   | | | | |   | | |     | |
%e A221844 +-+-+   | +-+   +-+ |   +-+-+ +-+   +-+ +-+-+-+-+
%e A221844 | | |   | | |   | | |   | | | | |   | | | | | | |
%e A221844 +-+-+---+ +-+---+-+ +---+-+-+ +-+---+-+ +-+-+-+-+
%e A221844 ...
%e A221844 For n = 5 there are a(5) = 76 dissections, each of which comprises one of A221843(5) = 10 sets of subsquares:
%e A221844 .
%e A221844             Subsquares             Prime dissections
%e A221844   4 X 4   3 X 3   2 X 2   1 X 1    (up to symmetry)
%e A221844   -----   -----   -----   -----    ----------------
%e A221844     -       -       -       25             1
%e A221844     -       -       1       21             3
%e A221844     -       -       2       17            13
%e A221844     -       -       3       13            20
%e A221844     -       -       4        9            14
%e A221844     -       1       -       16             3
%e A221844     -       1       1       12             6
%e A221844     -       1       2        8            10
%e A221844     -       1       3        4             5
%e A221844     1       -       -        9             1
%e A221844                                           --
%e A221844                                           76
%Y A221844 Cf. A221843, A221845.
%K A221844 nonn,more
%O A221844 1,3
%A A221844 _Geoffrey H. Morley_, Jan 26 2013
%E A221844 More terms from Wynn, 2013. - _N. J. A. Sloane_, Nov 29 2013