This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A221874 #40 Aug 05 2023 21:19:14 %S A221874 1,5,43,191,1633,7253,62011,275423,2354785,10458821,89419819, %T A221874 397159775,3395598337,15081612629,128943316987,572704120127, %U A221874 4896450447169,21747674952197,185936173675435,825838944063359,7060678149219361,31360132199455445 %N A221874 Numbers m such that 10*m^2 + 6 is a square. %C A221874 The Diophantine equation 10*x^2 + k = y^2, for |k| < 10, has integer solutions with the following k values: %C A221874 k = 1, the nonnegative x values are in A084070; %C A221874 k = -1, " A097315; %C A221874 k = 4, " 2*A084070; %C A221874 k = -4, " 2*A097315; %C A221874 k = 6, " this sequence; %C A221874 k = -6, " A221875; %C A221874 k = 9, " A075836; %C A221874 k = -9, " A052454. %C A221874 a(n+1)/a(n) tends alternately to (sqrt(2)+sqrt(5))^2/3 and (2*sqrt(2)+sqrt(5))^2/3; a(n+2)/a(n) tends to A176398^2. %H A221874 Vincenzo Librandi, <a href="/A221874/b221874.txt">Table of n, a(n) for n = 1..1000</a> %H A221874 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,38,0,-1). %F A221874 G.f.: x*(1+x)*(1+4*x+x^2)/((1-6*x-x^2)*(1+6*x-x^2)). %F A221874 a(n) = ((-5*(-1)^n+2*t)*(3+t)^(2*floor(n/2)) - (5*(-1)^n+2*t)*(3-t)^(2*floor(n/2)))/10, where t=sqrt(10). %F A221874 a(n) = 2*A129556(n) + 1. %F A221874 a(n)*a(n-3) - a(n-1)*a(n-2) = -36 + 12(-1)^n. %p A221874 A221874:=proc(q) %p A221874 local n; %p A221874 for n from 1 to q do if type(sqrt(10*n^2+6),integer) then print(n); %p A221874 fi; od; end: %p A221874 A221874(100000000000000000); # _Paolo P. Lava_, Feb 11 2013 %t A221874 LinearRecurrence[{0, 38, 0, -1}, {1, 5, 43, 191}, 22] %o A221874 (Magma) m:=22; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)*(1+4*x+x^2)/((1-6*x-x^2)*(1+6*x-x^2)))); %o A221874 (Maxima) makelist(expand(((-5*(-1)^n+2*sqrt(10))*(3+sqrt(10))^(2*floor(n/2))-(5*(-1)^n+2*sqrt(10))*(3-sqrt(10))^(2*floor(n/2)))/10), n, 1, 22); %Y A221874 Cf. A097315, A084070, A075836, A052454, A129556, A221875. %Y A221874 Subsequence of A031150. %K A221874 nonn,easy %O A221874 1,2 %A A221874 _Bruno Berselli_, Jan 28 2013