This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A221879 #31 Aug 17 2025 03:00:30 %S A221879 1,2,0,3,2,1,4,6,4,0,5,12,12,4,1,6,20,28,18,6,0,7,30,55,52,27,6,1,8, %T A221879 42,96,120,88,36,8,0,9,56,154,240,230,136,48,8,1,10,72,232,434,516, %U A221879 400,200,60,10,0,11,90,333,728,1036,996,650,280,75,10,1 %N A221879 Triangle T(n,k) read by rows: Number of order-reversing full contraction mappings (of an n-chain) with 1 fixed point and height exactly k. %C A221879 Row sums are A059570. %H A221879 A. D. Adeshola, V. Maltcev and A. Umar, <a href="http://arxiv.org/abs/1303.7428">Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain</a>, arXiv:1303.7428 [math.CO], 2013. %H A221879 A. D. Adeshola, A. Umar, <a href="https://combinatorialpress.com/jcmcc/vol106/">Combinatorial results for certain semigroups of order-preserving full contraction mappings of a finite chain</a>, JMCC 106 (2017) 37-49 %F A221879 T(n, 1) = 1, T(2,2) = 0 and T(n,k) = (n-k+1)*C(n-2,k-1) + T(n-2,k-2) for k > 0. %F A221879 Sum_{k=1..n} T(n,k) = A059570(n). %e A221879 T (4,6) = 6 because there are exactly 6 order-reversing full contraction mappings (of a 4-chain) with 1 fixed point and of height exactly 2, namely: (3222), (2221), (2211), (4433), (4333), (3332). %e A221879 Triangle starts: %e A221879 1, %e A221879 2, 0, %e A221879 3, 2, 1, %e A221879 4, 6, 4, 0, %e A221879 5, 12, 12, 4, 1, %e A221879 6, 20, 28, 18, 6, 0, %e A221879 7, 30, 55, 52, 27, 6, 1, %e A221879 8, 42, 96, 120, 88, 36, 8, 0, %e A221879 9, 56, 154, 240, 230, 136, 48, 8, 1, %e A221879 10, 72, 232, 434, 516, 400, 200, 60, 10, 0, %e A221879 11, 90, 333, 728, 1036, 996, 650, 280, 75, 10, 1 %e A221879 ... %p A221879 A221879 := proc(n,k) %p A221879 option remember ; %p A221879 if n<1 then %p A221879 0 ; %p A221879 elif n=1 then %p A221879 if k = 1 then %p A221879 1; %p A221879 else %p A221879 0 ; %p A221879 end if; %p A221879 else %p A221879 if n = 2 and k=2 then %p A221879 0; %p A221879 else %p A221879 (n-k+1)*binomial(n-2,k-1)+procname(n-2,k-2) ; %p A221879 end if; %p A221879 end if; %p A221879 end proc: %p A221879 seq(seq( A221879(n,k),k=1..n),n=1..20) ; # _R. J. Mathar_, Aug 15 2025 %Y A221879 Cf. A059570 (row sums), A221876, A221877, A221878, A221880, A221881, A221882. %K A221879 nonn,tabl,easy %O A221879 1,2 %A A221879 _Abdullahi Umar_, Feb 28 2013