This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A221902 #15 Sep 08 2022 08:46:04 %S A221902 31,103,211,751,1291,2371,2803,3271,5503,6151,8311,9103,9931,17851, %T A221902 23971,25303,32503,42331,49603,51511,68071,82003,94603,97231,105331, %U A221902 119551,122503,137803,157351,167611,171103,174631,192811,204151 %N A221902 Primes of the form 2*n^2 + 10*n + 3. %C A221902 Conjecture: After the first term, 2^a(n)-1 is not prime; in other words, these primes (except 31) are included in A054723. %C A221902 2*a(n) + 19 is a square. - _Vincenzo Librandi_, Apr 10 2015 %H A221902 Vincenzo Librandi, <a href="/A221902/b221902.txt">Table of n, a(n) for n = 1..1000</a> %t A221902 Select[Table[2 n^2 + 10 n + 3,{n, 500}],PrimeQ] %o A221902 (Magma) [a: n in [1..500] | IsPrime(a) where a is 2*n^2 + 10*n + 3]; %Y A221902 Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), A217500 (k=17), A217501 (k=18), A217620 (k=19), A217621 (k=21). %Y A221902 Cf. A054723 (Prime exponents of nonprime Mersenne numbers). %K A221902 nonn,easy %O A221902 1,1 %A A221902 _Vincenzo Librandi_, Jan 31 2013