A221918 Triangle of denominators of sum of two unit fractions: 1/n + 1/m, n >= m >= 1.
1, 2, 1, 3, 6, 3, 4, 4, 12, 2, 5, 10, 15, 20, 5, 6, 3, 2, 12, 30, 3, 7, 14, 21, 28, 35, 42, 7, 8, 8, 24, 8, 40, 24, 56, 4, 9, 18, 9, 36, 45, 18, 63, 72, 9, 10, 5, 30, 20, 10, 15, 70, 40, 90, 5, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 11, 12, 12, 12, 3, 60, 4, 84, 24, 36, 60, 132, 6
Offset: 1
Examples
The triangle a(n,m) begins: n\m 1 2 3 4 5 6 7 8 9 10 11 12 ... 1: 1 2: 2 1 3: 3 6 3 4: 4 4 12 2 5: 5 10 15 20 5 6: 6 3 2 12 30 3 7: 7 14 21 28 35 42 7 8: 8 8 24 8 40 24 56 4 9: 9 18 9 36 45 18 63 72 9 10: 10 5 30 20 10 15 70 40 90 5 11: 11 22 33 44 55 66 77 88 99 110 11 12: 12 12 12 3 60 4 84 24 36 60 132 6 ... a(n,1) = n because 1/R(n,1) = 1/n +1/1 = (n+1)/n, hence a(n,1) = denominator(1/n +1/1/) = n = numerator(R(n,1)). a(5,3) = denominator(1/5 + 1/3) = denominator(8/15 ) = 15. a(6,3) = denominator(1/6 + 1/3) = denominator(9/18 ) = denominator(1/2) = 2. The triangle of rationals R(n,m) = n*m/(n+m) = a(n,m)/A221919(n,m) given by 1/R(n,m) = 1/n + 1/m starts: n\m 1 2 3 4 5 6 7 8 9 10 1: 1/2 2: 2/3 1 3: 3/4 6/5 3/2 4: 4/5 4/3 12/7 2 5: 5/6 10/7 15/8 20/9 5/2 6: 6/7 3/2 2 12/5 30/11 3 7: 7/8 14/9 21/10 28/11 35/12 42/13 7/2 8: 8/9 8/5 24/11 8/3 40/13 24/7 56/15 4 9: 9/10 18/11 9/4 36/13 45/14 18/5 63/16 72/17 9/2 10: 10/11 5/3 30/13 20/7 10/3 15/4 70/17 40/9 90/19 5 ...
References
- L. Bankoff, Are the Twin Circles of Archimedes Really Twins?, Mathematics Mag. 47,4 (1974) 214-218.
- H. K. Strick, Geschichten aus der Mathematik, Spektrum der Wissenschaft - Spezial 2/2009.
Links
- T. Schoch, Arbelos References.
- Eric W. Weisstein, Arbelos (MathWorld).
Crossrefs
Cf. A221919 (companion).
Programs
-
Mathematica
a[n_, m_] := Denominator[1/n + 1/m]; Table[a[n, m], {n, 1, 12}, {m, 1, n}] // Flatten (* Jean-François Alcover, Feb 25 2013 *)
Formula
a(n,m) = denominator(1/n +1/m) = numerator(n*m/(n+m)), n >= m >= 1 and 0 otherwise.
a(n,m)/A221919(n,m) = R(n,m) = n*m/(n+m). 1/R(n,m) = 1/n + 1/m.
Comments