cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A221933 Number of n X 3 arrays of occupancy after each element stays put or moves to some horizontal or antidiagonal neighbor, without move-in move-out straight through or left turns.

Original entry on oeis.org

6, 105, 1599, 24535, 376389, 5773962, 88575493, 1358791848, 20844539836, 319765562424, 4905362062396, 75250682972713, 1154382737872290, 17708802802243865, 271661803663808763, 4167426584055854255
Offset: 1

Views

Author

R. H. Hardin, Feb 01 2013

Keywords

Comments

Column 3 of A221937.

Examples

			Some solutions for n=3:
..0..3..1....1..3..0....2..0..1....1..0..1....2..0..1....1..2..0....0..2..1
..0..1..0....0..2..0....1..0..1....2..1..0....2..0..0....0..3..0....0..4..0
..0..3..1....1..2..0....2..2..0....1..3..0....1..2..1....1..0..2....1..0..1
		

Crossrefs

Cf. A221937.

Formula

Empirical: a(n) = 14*a(n-1) + 21*a(n-2) - 5*a(n-3) - 26*a(n-4) + a(n-5).
Empirical g.f.: x*(6 + 21*x + 3*x^2 - 26*x^3 + x^4) / (1 - 14*x - 21*x^2 + 5*x^3 + 26*x^4 - x^5). - Colin Barker, Aug 11 2018

A221934 Number of n X 4 arrays of occupancy after each element stays put or moves to some horizontal or antidiagonal neighbor, without move-in move-out straight through or left turns.

Original entry on oeis.org

13, 783, 36467, 1759041, 84547866, 4065176472, 195452177326, 9397301189681, 451820171352622, 21723415149940892, 1044457051240660759, 50217266705524767168, 2414435205611270005630, 116085516886164224493024
Offset: 1

Views

Author

R. H. Hardin, Feb 01 2013

Keywords

Comments

Column 4 of A221937.

Examples

			Some solutions for n=3
..1..3..0..1....0..1..0..0....1..1..2..1....1..3..0..0....1..0..0..2
..0..2..1..0....3..1..2..2....0..0..2..2....0..0..3..2....2..2..1..0
..0..1..2..1....1..1..1..0....2..0..0..1....1..1..1..0....0..2..2..0
		

Crossrefs

Cf. A221937.

Formula

Empirical: a(n) = 45*a(n-1) +166*a(n-2) -812*a(n-3) -2452*a(n-4) +2243*a(n-5) +23138*a(n-6) +2192*a(n-7) +908*a(n-8) +6885*a(n-9) -5028*a(n-10) +3940*a(n-11) -628*a(n-12) +36*a(n-13).

A221935 Number of nX5 arrays of occupancy after each element stays put or moves to some horizontal or antidiagonal neighbor, without move-in move-out straight through or left turns.

Original entry on oeis.org

28, 5622, 799632, 119035112, 17626884659, 2611330803361, 386840503637732, 57306383975427486, 8489341273827367120, 1257607107085271304144, 186301337661284652338010, 27598594360590020663604925
Offset: 1

Views

Author

R. H. Hardin Feb 01 2013

Keywords

Comments

Column 5 of A221937

Examples

			Some solutions for n=3
..0..4..0..1..2....0..3..1..0..2....0..3..1..0..1....0..3..0..2..1
..0..1..2..1..0....0..2..0..3..0....0..0..2..3..0....0..1..0..1..0
..0..1..1..0..2....1..0..1..1..1....0..2..1..2..0....0..2..3..1..1
		

Formula

Empirical: a(n) = 139*a(n-1) +1565*a(n-2) -28842*a(n-3) -369727*a(n-4) +1342456*a(n-5) +27113117*a(n-6) +34514978*a(n-7) -1040783248*a(n-8) -752172735*a(n-9) -7514497431*a(n-10) +3813284858*a(n-11) -7857119331*a(n-12) +165551321671*a(n-13) +153295270688*a(n-14) +67167089407*a(n-15) +194143861216*a(n-16) -17802740958*a(n-17) +352253527909*a(n-18) -217093267050*a(n-19) -103711174603*a(n-20) +24768760853*a(n-21) +6245517002*a(n-22) +10757772379*a(n-23) -253702884*a(n-24) -2234119424*a(n-25) +988262416*a(n-26) +31172608*a(n-27) -79610304*a(n-28) +7948800*a(n-29)

A221936 Number of nX6 arrays of occupancy after each element stays put or moves to some horizontal or antidiagonal neighbor, without move-in move-out straight through or left turns.

Original entry on oeis.org

60, 40608, 17595404, 8118923949, 3719159201319, 1705064784016177, 781631768770230485, 358315975721236723937, 164259260168423743838749, 75299755989611523426077650, 34518925873564465982979613568
Offset: 1

Views

Author

R. H. Hardin Feb 01 2013

Keywords

Comments

Column 6 of A221937

Examples

			Some solutions for n=3
..0..2..1..1..2..0....0..2..0..1..0..3....0..2..0..1..0..2....0..2..1..0..3..1
..0..3..2..1..1..2....0..3..0..2..1..0....0..3..1..0..1..1....0..3..2..1..0..0
..0..1..0..0..0..2....0..2..1..0..2..1....0..2..0..3..0..2....0..0..1..0..4..0
		

A221938 Number of 2 X n arrays of occupancy after each element stays put or moves to some horizontal or antidiagonal neighbor, without move-in move-out straight through or left turns.

Original entry on oeis.org

1, 17, 105, 783, 5622, 40608, 293084, 2115379, 15268366, 110202874, 795416273, 5741108247, 41437835079, 299087573904, 2158736742330, 15581203397143, 112461095655909, 811715097631008, 5858749604657939, 42286939137094085
Offset: 1

Views

Author

R. H. Hardin, Feb 01 2013

Keywords

Comments

Row 2 of A221937.

Examples

			Some solutions for n=3:
..0..4..0....1..2..0....1..0..2....2..0..0....0..3..0....0..3..2....0..3..1
..0..2..0....0..2..1....1..2..0....0..3..1....2..0..1....0..0..1....0..1..1
		

Crossrefs

Cf. A221937.

Formula

Empirical: a(n) = 3*a(n-1) + 25*a(n-2) + 40*a(n-3) + a(n-4) - 42*a(n-5) - 20*a(n-6) + 10*a(n-7) + 4*a(n-8) -a(n-9).
Empirical g.f.: x*(1 + 14*x + 29*x^2 + 3*x^3 - 33*x^4 - 8*x^5 + 19*x^6 + 4*x^7 - x^8) / (1 - 3*x - 25*x^2 - 40*x^3 - x^4 + 42*x^5 + 20*x^6 - 10*x^7 - 4*x^8 + x^9). - Colin Barker, Aug 11 2018

A221939 Number of 3Xn arrays of occupancy after each element stays put or moves to some horizontal or antidiagonal neighbor, without move-in move-out straight through or left turns.

Original entry on oeis.org

1, 91, 1599, 36467, 799632, 17595404, 387146025, 8517616158, 187399250327, 4123030670649, 90712135220235, 1995786856338823, 43909951229853113, 966076992787974879, 21254971544597958477, 467637484141672483673
Offset: 1

Views

Author

R. H. Hardin Feb 01 2013

Keywords

Comments

Row 3 of A221937

Examples

			Some solutions for n=3
..1..1..2....0..4..0....1..1..1....1..1..2....0..4..0....0..3..1....2..0..1
..0..1..3....1..0..1....0..4..0....0..2..0....1..0..1....0..0..2....0..3..0
..0..0..1....0..3..0....0..0..2....1..1..1....1..1..1....2..0..1....0..2..1
		

Formula

Empirical: a(n) = 6*a(n-1) +286*a(n-2) +1731*a(n-3) -3366*a(n-4) -58755*a(n-5) -73158*a(n-6) +744580*a(n-7) +1606773*a(n-8) -5847271*a(n-9) -13299665*a(n-10) +35585397*a(n-11) +56858689*a(n-12) -168213873*a(n-13) -99886051*a(n-14) +532060381*a(n-15) -127805646*a(n-16) -951724652*a(n-17) +874261131*a(n-18) +729065885*a(n-19) -1511277493*a(n-20) +275583551*a(n-21) +992093720*a(n-22) -708567632*a(n-23) -119679569*a(n-24) +310913349*a(n-25) -92576435*a(n-26) -25624476*a(n-27) +17876348*a(n-28) -1254086*a(n-29) -1085212*a(n-30) +391330*a(n-31) -46391*a(n-32) -25190*a(n-33) +7306*a(n-34) +873*a(n-35) -236*a(n-36) -12*a(n-37) for n>38

A221940 Number of 4Xn arrays of occupancy after each element stays put or moves to some horizontal or antidiagonal neighbor, without move-in move-out straight through or left turns.

Original entry on oeis.org

1, 489, 24535, 1759041, 119035112, 8118923949, 552777330287, 37650441405451, 2564181255574899, 174635497977344862, 11893675692936218866, 810026663520753630706, 55167419097633745309553, 3757214394165203187203557
Offset: 1

Views

Author

R. H. Hardin Feb 01 2013

Keywords

Comments

Row 4 of A221937

Examples

			Some solutions for n=3
..1..3..0....0..1..1....2..0..1....1..0..1....0..1..1....0..1..0....1..1..0
..0..0..1....3..0..1....1..0..0....1..3..0....3..0..1....2..3..0....1..4..0
..1..2..0....0..2..0....2..3..0....0..1..1....1..1..3....1..1..2....0..2..0
..2..1..1....2..1..1....1..1..1....2..1..1....0..1..0....1..0..1....0..2..1
		

A221941 Number of 5Xn arrays of occupancy after each element stays put or moves to some horizontal or antidiagonal neighbor, without move-in move-out straight through or left turns.

Original entry on oeis.org

1, 2627, 376389, 84547866, 17626884659, 3719159201319, 782051177169672, 164583386567947853, 34629683921533060992, 7286522628060662000197
Offset: 1

Views

Author

R. H. Hardin Feb 01 2013

Keywords

Comments

Row 5 of A221937

Examples

			Some solutions for n=3
..0..2..0....0..1..0....0..2..0....0..3..0....0..2..1....0..3..1....0..2..1
..0..3..0....3..1..0....1..2..0....0..3..1....1..2..1....0..1..1....0..3..2
..0..4..2....1..3..2....0..4..2....1..0..0....0..0..1....0..2..1....0..0..2
..0..0..0....0..0..2....0..0..2....0..4..1....2..1..2....1..0..1....1..0..1
..1..2..1....1..1..0....1..1..0....0..1..1....1..1..0....2..0..2....1..0..2
		
Showing 1-8 of 8 results.