cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221967 T(n,k)=Number of -k..k arrays of length n with the sum ahead of each element differing from the sum following that element by k or less.

Original entry on oeis.org

3, 5, 9, 7, 25, 15, 9, 49, 65, 33, 11, 81, 175, 225, 63, 13, 121, 369, 833, 705, 129, 15, 169, 671, 2241, 3647, 2305, 255, 17, 225, 1105, 4961, 12609, 16513, 7425, 513, 19, 289, 1695, 9633, 34111, 73089, 73983, 24065, 1023, 21, 361, 2465, 17025, 78273, 241153
Offset: 1

Views

Author

R. H. Hardin Feb 01 2013

Keywords

Comments

Table starts
....3.......5.........7..........9..........11...........13............15
....9......25........49.........81.........121..........169...........225
...15......65.......175........369.........671.........1105..........1695
...33.....225.......833.......2241........4961.........9633.........17025
...63.....705......3647......12609.......34111........78273........159615
..129....2305.....16513......73089......241153.......653185.......1535745
..255....7425.....73983.....419841.....1690623......5407233......14661375
..513...24065....332801....2419713....11888129.....44890625.....140355585
.1023...77825...1495039...13930497....83512319....372332545....1342437375
.2049..251905...6719489...80230401...586864641...3089205249...12843782145
.4095..815105..30195711..462012417..4123582463..25628045313..122870296575
.8193.2637825.135700481.2660655105.28975366145.212618141697.1175482548225

Examples

			Some solutions for n=6 k=4
..4...-2....4....1...-4...-1...-2....1...-2...-1....1....3....4....1...-1...-1
.-4....4...-4....0....4....4....3....2....3....2...-2...-4...-2...-3....3....3
..1...-3....3...-2...-1...-2...-3...-2...-2....2....0....3....1....2....0...-1
..0....2...-1....3...-2....0....2....2....3...-3....4....1...-3...-2...-2....1
..3...-4...-2...-3....3....3...-2....1...-1....0...-1...-3....0....3...-3...-2
..1....1....2....1...-1...-2...-1....1...-1....1....0....1....2...-4....4....2
		

Crossrefs

Column 1 is A062510(n+1)
Column 2 is A189318
Row 2 is A016754
Row 3 is A005917(n+1)
Row 4 is A142993

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +2*a(n-2)
k=2: a(n) = 3*a(n-1) +2*a(n-2) -4*a(n-3)
k=3: a(n) = 3*a(n-1) +8*a(n-2) -4*a(n-3) -8*a(n-4)
k=4: a(n) = 5*a(n-1) +8*a(n-2) -20*a(n-3) -8*a(n-4) +16*a(n-5)
k=5: a(n) = 5*a(n-1) +18*a(n-2) -20*a(n-3) -48*a(n-4) +16*a(n-5) +32*a(n-6)
k=6: a(n) = 7*a(n-1) +18*a(n-2) -56*a(n-3) -48*a(n-4) +112*a(n-5) +32*a(n-6) -64*a(n-7)
k=7: a(n) = 7*a(n-1) +32*a(n-2) -56*a(n-3) -160*a(n-4) +112*a(n-5) +256*a(n-6) -64*a(n-7) -128*a(n-8)
Empirical for row n:
n=1: a(n) = 2*n + 1
n=2: a(n) = 4*n^2 + 4*n + 1
n=3: a(n) = 4*n^3 + 6*n^2 + 4*n + 1
n=4: a(n) = (16/3)*n^4 + (32/3)*n^3 + (32/3)*n^2 + (16/3)*n + 1
n=5: a(n) = (20/3)*n^5 + (50/3)*n^4 + 20*n^3 + (40/3)*n^2 + (16/3)*n + 1
n=6: a(n) = (128/15)*n^6 + (128/5)*n^5 + (112/3)*n^4 + 32*n^3 + (272/15)*n^2 + (32/5)*n + 1
n=7: a(n) = (488/45)*n^7 + (1708/45)*n^6 + (2912/45)*n^5 + (602/9)*n^4 + (2072/45)*n^3 + (952/45)*n^2 + (32/5)*n + 1