cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A221968 Number of -n..n arrays of length 5 with the sum ahead of each element differing from the sum following that element by n or less.

Original entry on oeis.org

63, 705, 3647, 12609, 34111, 78273, 159615, 297857, 518719, 854721, 1345983, 2041025, 2997567, 4283329, 5976831, 8168193, 10959935, 14467777, 18821439, 24165441, 30659903, 38481345, 47823487, 58898049, 71935551, 87186113
Offset: 1

Views

Author

R. H. Hardin, Feb 01 2013

Keywords

Comments

Row 5 of A221967.

Examples

			Some solutions for n=6:
.-5...-3...-4...-3....2...-2....6....4...-1....2....2....3...-6....0....1....5
..2....3....3....5...-1...-3...-4...-5...-2...-2....2...-2....5...-1....0...-6
.-1...-1....2....1...-1....4....6....3....2....1...-5...-4...-1...-1...-1....5
..2....6....0....1....2...-3...-5....1...-4....4....3....3...-4....0....2...-5
.-3...-3...-5...-2...-2...-1....5...-3...-2....1....3....1....1...-1....2....3
		

Crossrefs

Cf. A221967.

Formula

Empirical: a(n) = (20/3)*n^5 + (50/3)*n^4 + 20*n^3 + (40/3)*n^2 + (16/3)*n + 1.
Conjectures from Colin Barker, Aug 14 2018: (Start)
G.f.: x*(9 + 12*x - x^2)*(7 + 27*x + 5*x^2 + x^3) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)