A221982 Primes p == 2 (mod 5) for which 4*p+1 is also prime.
7, 37, 67, 97, 127, 277, 307, 487, 577, 727, 997, 1087, 1297, 1327, 1567, 1597, 1777, 1987, 2017, 2437, 2647, 2677, 2767, 2887, 3037, 3067, 3307, 3457, 3637, 3907, 4057, 4297, 4447, 4567, 4987, 5197, 5527, 5557, 6007, 6247, 6337, 6367, 6397, 6547, 6577, 7027, 7057, 7237, 7417, 7507, 7717, 7867
Offset: 1
Keywords
Examples
7 is a member because 7 == 2 (mod 5) and 29 = 4*7 + 1 are both prime.
References
- P. L. Chebyshev, Theory of congruences. Elements of number theory, Chelsea, 1972, p. 306.
- R. K. Guy, Unsolved Problems in Number Theory, F9.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..10000
- P. Moree, Artin's primitive root conjecture - a survey, arXiv 2004, revised 2012, p. 1.
- Index entries for primes by primitive root
Programs
-
Maple
A221982:=proc(q) local n; for n from 1 to q do if isprime(n) and isprime(4*n+1) and (n mod 5)=2 then print(n) fi; od; end: A221982 (10000); # Paolo P. Lava, Feb 12 2013
-
Mathematica
Select[ Prime[ Range[1000]], Mod[#, 5] == 2 && PrimeQ[4 # + 1] &]
Formula
a(n) = (A221981(n) - 1)/4.
Comments