cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222006 Number of forests of rooted plane binary trees (all nodes have outdegree of 0 or 2) with n total nodes.

This page as a plain text file.
%I A222006 #37 Sep 23 2021 06:22:30
%S A222006 1,1,1,2,2,4,5,10,12,27,35,79,104,244,331,789,1083,2615,3652,8880,
%T A222006 12523,30657,43661,107326,153985,379945,548776,1357922,1972153,
%U A222006 4892140,7139850,17747863,26011843,64776658,95296413,237689691,350844814,876313458,1297367201,3244521203,4816399289
%N A222006 Number of forests of rooted plane binary trees (all nodes have outdegree of 0 or 2) with n total nodes.
%C A222006 Here, the binary trees are sized by total number of nodes.
%H A222006 Alois P. Heinz, <a href="/A222006/b222006.txt">Table of n, a(n) for n = 0..1000</a>
%F A222006 O.g.f.: Product_{i>=1} 1/(1 - x^i)^A126120(i-1).
%F A222006 a(n) ~ c * 2^n / n^(3/2), where c = 1.165663931402962361339366557... if n is even, c = 1.490999501305559555120304528... if n is odd. - _Vaclav Kotesovec_, Aug 31 2014
%e A222006 a(6) = 5: There is one forest with 6 trees, one forest with 4 trees and 3 forests with 2 trees, namely
%e A222006 1)...o..o..o..o..o..o...............
%e A222006 ....................................
%e A222006 2)...o..o..o....o...................
%e A222006 .............../.\..................
%e A222006 ..............o...o.................
%e A222006 ....................................
%e A222006 3)...o........o.....................
%e A222006 ..../.\....../.\....................
%e A222006 ...o...o....o...o...................
%e A222006 ....................................
%e A222006 4).....o....o.....5)......o.....o...
%e A222006 ....../.\................/.\........
%e A222006 .....o...o..............o...o.......
%e A222006 ..../.\..................../.\......
%e A222006 ...o...o..................o...o.....
%p A222006 b:= proc(n) option remember; `if`(irem(n, 2)=0, 0,
%p A222006       `if`(n<2, n, add(b(i)*b(n-1-i), i=1..n-2)))
%p A222006     end:
%p A222006 g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p A222006       add(g(n-i*j, i-2)*binomial(b(i)+j-1, j), j=0..n/i)))
%p A222006     end:
%p A222006 a:= n-> g(n, iquo(n-1, 2)*2+1):
%p A222006 seq(a(n), n=0..50);  # _Alois P. Heinz_, Feb 26 2013
%t A222006 nn=40;a=Drop[CoefficientList[Series[t=(1-(1-4x^2)^(1/2))/(2x),{x,0,nn}],x],1];CoefficientList[Series[Product[1/(1-x^i)^a[[i]],{i,1,nn-1}],{x,0,nn}],x]
%Y A222006 Row sums of A342770.
%K A222006 nonn
%O A222006 0,4
%A A222006 _Geoffrey Critzer_, Feb 23 2013