A222031 Irregular triangle read by rows in which row n gives numerators of the coefficients of the partition class polynomial Hpart_n(x), n >= 1.
1, -23, 3592, -419, 1, -94, 169659, -65838, 1092873176, 145023, 1, -213, 1312544, -723721, 44648582886, 9188934683, 166629520876208, 2791651635293, 1, -475, 9032603, -9455070, 3949512899743, -97215753021, 9776785708507683, -53144327916296, -134884469547631
Offset: 1
Examples
For n = 1 the first partition class polynomial Hpart_1(x) is x^3 - 23*x^2 + 3592/23*x - 419, so the numerators of the coefficients are 1, -23, 3592, -419. Triangle begins: 1, -23, 3592, -419; 1, -94, 169659, -65838, 1092873176, 145023; 1, -213, 1312544, -723721, 44648582886, 9188934683, 166629520876208, 2791651635293; 1, -475, 9032603, -9455070, 3949512899743, -97215753021, 9776785708507683, -53144327916296, -134884469547631; ...
Links
- J. H. Bruinier and K. Ono, Algebraic formulas for the coefficients of half-integral weight harmonic weak Maass forms
- J. H. Bruinier, K. Ono, A. V. Sutherland, Class polynomials for nonholomorphic modular functions
- A. V. Sutherland, Partition class polynomials, Hpart_n(x), for n = 1..770
Comments