cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222057 Triangle read by rows: coefficients of harmonic-geometric polynomials.

Original entry on oeis.org

1, 1, 3, 1, 9, 11, 1, 21, 66, 50, 1, 45, 275, 500, 274, 1, 93, 990, 3250, 4110, 1764, 1, 189, 3311, 17500, 38360, 37044, 13068, 1, 381, 10626, 85050, 287700, 469224, 365904, 109584, 1, 765, 33275, 388500, 1904574, 4667544, 6037416, 3945024, 1026576, 1, 1533, 102630, 1705250, 11651850, 40266828, 76839840, 82188000, 46195920, 10628640
Offset: 1

Views

Author

N. J. A. Sloane, Feb 08 2013

Keywords

Examples

			Triangle begins:
  1;
  1,   3;
  1,   9,    11;
  1,  21,    66,    50;
  1,  45,   275,   500,    274;
  1,  93,   990,  3250,   4110,   1764;
  1, 189,  3311, 17500,  38360,  37044,  13068;
  1, 381, 10626, 85050, 287700, 469224, 365904, 109584;
  ...
		

Crossrefs

Row sums give A222058. See A222060 for another version (including row & column 0).

Programs

  • PARI
    A222057(n,k)=stirling(n,k,2)*abs(stirling(k+1,2)) \\ with 1 <= k <= n: vector(8,n,vector(n,k,A222057(n,k))). - M. F. Hasler, Jul 12 2018

Formula

The n-th polynomial is Sum_{k=0..n} Stirling2(n,k)*|Stirling1(k+1,2)|*x^k.
(The k=0 term is always 0. Sequence lists coefficients of x, x^2, x^3, ... - M. F. Hasler, Jul 12 2018)