A222057 Triangle read by rows: coefficients of harmonic-geometric polynomials.
1, 1, 3, 1, 9, 11, 1, 21, 66, 50, 1, 45, 275, 500, 274, 1, 93, 990, 3250, 4110, 1764, 1, 189, 3311, 17500, 38360, 37044, 13068, 1, 381, 10626, 85050, 287700, 469224, 365904, 109584, 1, 765, 33275, 388500, 1904574, 4667544, 6037416, 3945024, 1026576, 1, 1533, 102630, 1705250, 11651850, 40266828, 76839840, 82188000, 46195920, 10628640
Offset: 1
Examples
Triangle begins: 1; 1, 3; 1, 9, 11; 1, 21, 66, 50; 1, 45, 275, 500, 274; 1, 93, 990, 3250, 4110, 1764; 1, 189, 3311, 17500, 38360, 37044, 13068; 1, 381, 10626, 85050, 287700, 469224, 365904, 109584; ...
Links
- Ayhan Dil and Veli Kurt, Polynomials related to harmonic numbers and evaluation of harmonic number series I, INTEGERS, 12 (2012), #A38.
Programs
-
PARI
A222057(n,k)=stirling(n,k,2)*abs(stirling(k+1,2)) \\ with 1 <= k <= n: vector(8,n,vector(n,k,A222057(n,k))). - M. F. Hasler, Jul 12 2018
Formula
The n-th polynomial is Sum_{k=0..n} Stirling2(n,k)*|Stirling1(k+1,2)|*x^k.
(The k=0 term is always 0. Sequence lists coefficients of x, x^2, x^3, ... - M. F. Hasler, Jul 12 2018)